Namespaces
Variants
Actions

Difference between revisions of "Weierstrass point"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A point on an [[Algebraic curve|algebraic curve]] (or on a [[Riemann surface|Riemann surface]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974901.png" /> of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974902.png" /> at which the following condition is satisfied: There exists a non-constant rational function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974903.png" /> which has at this point a pole of order not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974904.png" /> and which has no singularities at other points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974905.png" />. Only a finite number of Weierstrass points can exist on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974906.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974907.png" /> is 0 or 1, there are no such points at all, while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974908.png" />, Weierstrass points must exist. These results were obtained for Riemann surfaces by K. Weierstrass. For algebraic curves of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w0974909.png" /> there always exist at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749010.png" /> Weierstrass points, and only hyper-elliptic curves of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749011.png" /> have exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749012.png" /> Weierstrass points. The upper bound on the number of Weierstrass points is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749013.png" />. The presence of a Weierstrass point on an algebraic curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749014.png" /> of genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749015.png" /> ensures the existence of a morphism of degree not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749016.png" /> from the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749017.png" /> onto the projective line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097490/w09749018.png" />.
+
{{TEX|done}}{{MSC|14H55}}
 +
 
 +
A point on an [[Algebraic curve|algebraic curve]] (or on a [[Riemann surface|Riemann surface]]) $X$ of genus $g$ at which the following condition is satisfied: There exists a non-constant rational function on $X$ which has at this point a pole of order not exceeding $g$ and which has no singularities at other points of $X$. Only a finite number of Weierstrass points can exist on $X$, and if $g$ is 0 or 1, there are no such points at all, while if $g\geq2$, Weierstrass points must exist. These results were obtained for Riemann surfaces by K. Weierstrass. For algebraic curves of genus $g\geq2$ there always exist at least $2g+2$ Weierstrass points, and only [[hyper-elliptic curve]]s of genus $g$ have exactly $2g+2$ Weierstrass points. The upper bound on the number of Weierstrass points is $(g-1)g(g+1)$. The presence of a Weierstrass point on an algebraic curve $X$ of genus $g\geq2$ ensures the existence of a morphism of degree not exceeding $g$ from the curve $X$ onto the projective line $P^1$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.G. Chebotarev,   "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer,   "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top"> N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 {{MR|0092855}} {{ZBL|0078.06602}} </TD></TR>
 +
</table>
  
  
Line 10: Line 15:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths,   J.E. Harris,   "Principles of algebraic geometry" , Wiley (Interscience) (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Arbarello,   M. Cornalba,   P.A. Griffiths,   J.E. Harris,   "Geometry of algebraic curves" , '''1''' , Springer (1985)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.C. Gunning,   "Lectures on Riemann surfaces" , Princeton Univ. Press (1966)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) {{MR|0507725}} {{ZBL|0408.14001}} </TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , '''1''' , Springer (1985) {{MR|0770932}} {{ZBL|0559.14017}} </TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top"> R.C. Gunning, "Lectures on Riemann surfaces" , Princeton Univ. Press (1966) {{MR|0207977}} {{ZBL|0175.36801}} </TD></TR>
 +
</table>

Latest revision as of 18:09, 22 November 2014

2020 Mathematics Subject Classification: Primary: 14H55 [MSN][ZBL]

A point on an algebraic curve (or on a Riemann surface) $X$ of genus $g$ at which the following condition is satisfied: There exists a non-constant rational function on $X$ which has at this point a pole of order not exceeding $g$ and which has no singularities at other points of $X$. Only a finite number of Weierstrass points can exist on $X$, and if $g$ is 0 or 1, there are no such points at all, while if $g\geq2$, Weierstrass points must exist. These results were obtained for Riemann surfaces by K. Weierstrass. For algebraic curves of genus $g\geq2$ there always exist at least $2g+2$ Weierstrass points, and only hyper-elliptic curves of genus $g$ have exactly $2g+2$ Weierstrass points. The upper bound on the number of Weierstrass points is $(g-1)g(g+1)$. The presence of a Weierstrass point on an algebraic curve $X$ of genus $g\geq2$ ensures the existence of a morphism of degree not exceeding $g$ from the curve $X$ onto the projective line $P^1$.

References

[1] N.G. Chebotarev, "The theory of algebraic functions" , Moscow-Leningrad (1948) (In Russian)
[2] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 MR0092855 Zbl 0078.06602


Comments

References

[a1] P.A. Griffiths, J.E. Harris, "Principles of algebraic geometry" , Wiley (Interscience) (1978) MR0507725 Zbl 0408.14001
[a2] E. Arbarello, M. Cornalba, P.A. Griffiths, J.E. Harris, "Geometry of algebraic curves" , 1 , Springer (1985) MR0770932 Zbl 0559.14017
[a3] R.C. Gunning, "Lectures on Riemann surfaces" , Princeton Univ. Press (1966) MR0207977 Zbl 0175.36801
How to Cite This Entry:
Weierstrass point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_point&oldid=12917
This article was adapted from an original article by V.E. Voskresenskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article