|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A resolvent of an algebraic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816001.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816002.png" /> is an algebraic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816003.png" />, with coefficients that rationally depend on the coefficients of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816004.png" />, such that, if the roots of this equation are known, the roots of the given equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816005.png" /> can be found by solving simpler equations of degrees not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816006.png" />. A rational expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816007.png" /> itself is sometimes called a resolvent.
| + | <!-- |
| + | r0816001.png |
| + | $#A+1 = 102 n = 0 |
| + | $#C+1 = 102 : ~/encyclopedia/old_files/data/R081/R.0801600 Resolvent |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816008.png" /> be a separable polynomial over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r0816009.png" /> with [[Galois group|Galois group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160010.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160011.png" /> be a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160012.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160013.png" /> be a rational expression in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160014.png" /> that remains invariant under all permutations of the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160015.png" /> belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160016.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160017.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160018.png" /> is a root of some equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160019.png" /> with coefficients from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160020.png" />, the Galois group of which is a proper quotient group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160021.png" />. Thus, solving the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160022.png" /> reduces to solving the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160023.png" /> and solving the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160024.png" /> over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160025.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | For example, in order to solve an equation of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160026.png" />:
| + | A resolvent of an algebraic equation $ f( x) = 0 $ |
| + | of degree $ n $ |
| + | is an algebraic equation $ g( y) = 0 $, |
| + | with coefficients that rationally depend on the coefficients of $ f( x) $, |
| + | such that, if the roots of this equation are known, the roots of the given equation $ f( x) = 0 $ |
| + | can be found by solving simpler equations of degrees not exceeding $ n $. |
| + | A rational expression $ y = y( x _ {1} \dots x _ {n} ) $ |
| + | itself is sometimes called a resolvent. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160027.png" /></td> </tr></table>
| + | Let $ f( x) $ |
| + | be a [[separable polynomial]] over a field $ k $ |
| + | with [[Galois group]] $ G $, |
| + | and let $ H $ |
| + | be a normal subgroup of $ G $. |
| + | Let $ y = y( x _ {1} \dots x _ {n} ) $ |
| + | be a rational expression in $ x _ {1} \dots x _ {n} $ |
| + | that remains invariant under all permutations of the roots $ x _ {1} \dots x _ {n} $ |
| + | belonging to $ H $, |
| + | and let $ y \notin k $. |
| + | Then $ y $ |
| + | is a root of some equation $ g( y) = 0 $ |
| + | with coefficients from $ k $, |
| + | the Galois group of which is a proper quotient group of $ G $. |
| + | Thus, solving the equation $ f( x) = 0 $ |
| + | reduces to solving the equation $ g( y) = 0 $ |
| + | and solving the equation $ f( x) = 0 $ |
| + | over the field $ k( y _ {1} \dots y _ {s} ) $. |
| | | |
− | (every equation of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160028.png" /> is reducible to this form), the following cubic resolvent is used:
| + | For example, in order to solve an equation of degree $ 4 $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160029.png" /></td> </tr></table>
| + | $$ |
| + | x ^ {4} + px ^ {2} + qx + r = 0 |
| + | $$ |
| | | |
− | Its roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160030.png" /> are related to the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160031.png" /> by the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160034.png" />. The roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160035.png" /> are determined by the [[Cardano formula|Cardano formula]], which also makes it possible to determine <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160036.png" />.
| + | (every equation of degree $ 4 $ |
| + | is reducible to this form), the following cubic resolvent is used: |
| + | |
| + | $$ |
| + | y ^ {3} - 2py ^ {2} + ( p ^ {2} - 4r ) y + q ^ {2} = 0. |
| + | $$ |
| + | |
| + | Its roots $ y _ {1} , y _ {2} , y _ {3} $ |
| + | are related to the roots $ x _ {1} , x _ {2} , x _ {3} , x _ {4} $ |
| + | by the relations $ y _ {1} = ( x _ {1} + x _ {2} )( x _ {3} + x _ {4} ) $, |
| + | $ y _ {2} = ( x _ {1} + x _ {3} )( x _ {2} + x _ {4} ) $, |
| + | $ y _ {3} = ( x _ {1} + x _ {4} )( x _ {2} + x _ {3} ) $. |
| + | The roots $ y _ {1} , y _ {2} , y _ {3} $ |
| + | are determined by the [[Cardano formula|Cardano formula]], which also makes it possible to determine $ x _ {1} , x _ {2} , x _ {3} , x _ {4} $. |
| | | |
| Successive application of the resolvent method permits one to solve any equation with a solvable Galois group by reduction to solving a chain of equations with cyclic Galois groups. Lagrange's resolvent is used in solving the latter. | | Successive application of the resolvent method permits one to solve any equation with a solvable Galois group by reduction to solving a chain of equations with cyclic Galois groups. Lagrange's resolvent is used in solving the latter. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160037.png" /> be an equation over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160038.png" /> with a cyclic Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160039.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160040.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160041.png" /> contain a primitive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160042.png" />-th root of unity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160043.png" />. For an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160044.png" /> which belongs to the splitting field of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160045.png" /> (cf. [[Splitting field of a polynomial|Splitting field of a polynomial]]), and for a character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160046.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160047.png" /> into the group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160048.png" />-th roots of unity, Lagrange's resolvent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160049.png" /> is defined by the formula: | + | Let $ f( x) = 0 $ |
| + | be an equation over a field $ k $ |
| + | with a cyclic Galois group $ G $ |
| + | of order $ n $, |
| + | and let $ k $ |
| + | contain a primitive $ n $- |
| + | th root of unity $ \zeta _ {n} $. |
| + | For an element $ \alpha $ |
| + | which belongs to the splitting field of the polynomial $ f( x) $( |
| + | cf. [[Splitting field of a polynomial|Splitting field of a polynomial]]), and for a character $ \chi $ |
| + | from $ G $ |
| + | into the group of $ n $- |
| + | th roots of unity, Lagrange's resolvent $ \rho ( \chi , \alpha ) $ |
| + | is defined by the formula: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160050.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ \tag{* } |
| + | \rho ( \chi , \alpha ) = \sum _ {\sigma \in G } \chi ( \sigma )^{-1} |
| + | \sigma ( \alpha ). |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160051.png" /> be one of the roots of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160052.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160053.png" /> run through the characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160054.png" />. Then for the system of linear equations (*) the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160055.png" /> can be determined if the Lagrange resolvents are known for all characters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160057.png" />. | + | Let $ \alpha = x _ {1} $ |
| + | be one of the roots of the polynomial $ f( x) $ |
| + | and let $ \chi $ |
| + | run through the characters of $ G $. |
| + | Then for the system of linear equations (*) the roots $ x _ {1} \dots x _ {n} $ |
| + | can be determined if the Lagrange resolvents are known for all characters $ \chi $ |
| + | of $ G $. |
| | | |
− | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160058.png" /> the relation | + | For $ \tau \in G $ |
| + | the relation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160059.png" /></td> </tr></table>
| + | $$ |
| + | \tau \rho ( \chi , \alpha ) = \ |
| + | \xi ( \tau ) \rho ( \chi , \alpha ) |
| + | $$ |
| | | |
− | is fulfilled, showing that the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160061.png" />, for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160062.png" />, are invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160063.png" /> and are therefore uniquely defined rational expressions in the coefficients of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160064.png" /> and the root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160065.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160066.png" /> generates the group of characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160067.png" />, then the following equalities hold: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160069.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160070.png" />. | + | is fulfilled, showing that the elements $ a = \rho ( \chi , \alpha ) ^ {n} $ |
| + | and $ b _ {i} = \rho ( \chi , \alpha )^{-i} \rho ( \chi ^ {i} , \alpha ) $, |
| + | for any integer $ i $, |
| + | are invariant under $ G $ |
| + | and are therefore uniquely defined rational expressions in the coefficients of the polynomial $ f( x) $ |
| + | and the root $ \zeta _ {n} $. |
| + | If $ \chi $ |
| + | generates the group of characters of $ G $, |
| + | then the following equalities hold: $ \rho ( \chi , \alpha ) = a ^ {1/n} $ |
| + | and $ \rho ( \chi ^ \prime , \alpha ) = b _ {i} \rho ( \chi , \alpha ) ^ {i} $ |
| + | for $ \chi ^ \prime = \chi ^ {i} $. |
| | | |
− | Any algebraic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160071.png" /> that is irreducible over a given field (see [[Galois theory|Galois theory]]) and that is such that as a result of the adjunction of one of its roots to this field a field is obtained that contains all roots of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160072.png" />, is called a Galois resolvent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160073.png" />. | + | Any algebraic equation $ y( x) = 0 $ |
| + | that is irreducible over a given field (see [[Galois theory|Galois theory]]) and that is such that as a result of the adjunction of one of its roots to this field a field is obtained that contains all roots of the equation $ f( x) = 0 $, |
| + | is called a Galois resolvent of $ f( x) $. |
| | | |
| ====References==== | | ====References==== |
Line 36: |
Line 121: |
| The resolvent (resolvent kernel) of an [[Integral equation|integral equation]] | | The resolvent (resolvent kernel) of an [[Integral equation|integral equation]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160074.png" /></td> <td valign="top" style="width:5%;text-align:right;">(**)</td></tr></table>
| + | $$ \tag{** } |
| + | \phi ( s) + \lambda \int\limits _ { a } ^ { b } K( s, t) \phi ( t) dt = f( s) |
| + | $$ |
| + | |
| + | is understood to be a function $ \Gamma ( s, t, \lambda ) $ |
| + | of the variables $ s, t $ |
| + | and the parameter $ \lambda $ |
| + | with the aid of which the solution of equation (**) can be represented in the form: |
| | | |
− | is understood to be a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160075.png" /> of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160076.png" /> and the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160077.png" /> with the aid of which the solution of equation (**) can be represented in the form:
| + | $$ |
| + | f( s) + \lambda \int\limits _ { a } ^ { b } \Gamma ( s, t, \lambda ) f( t) dt , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160078.png" /></td> </tr></table>
| + | provided $ \lambda $ |
| + | is not an eigenvalue of (**). For example, for the kernel $ K( s, t) = s + t $ |
| + | the resolvent is the function |
| | | |
− | provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160079.png" /> is not an eigenvalue of (**). For example, for the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160080.png" /> the resolvent is the function
| + | $$ |
| + | \Gamma ( s, t, \lambda ) = \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160081.png" /></td> </tr></table>
| + | \frac{s+ t - (( s+ t) / 2 - st - 1 / 3 ) \lambda }{1 - \lambda - { |
| + | \lambda ^ {2} } / 12 } |
| + | . |
| + | $$ |
| | | |
| ''BSE-3'' | | ''BSE-3'' |
| | | |
− | The resolvent of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160082.png" /> is an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160083.png" /> inverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160084.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160085.png" /> is a closed linear operator defined on a dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160086.png" /> of a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160087.png" /> with values in the same space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160088.png" /> is such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160089.png" /> is a continuous linear operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160090.png" />. The points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160091.png" /> for which the resolvent exists are called regular points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160092.png" />, and the collection of all regular points is the resolvent set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160093.png" /> of this operator. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160094.png" /> is open and on each of its connected components the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160095.png" /> is an analytic function of the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160096.png" />. | + | The resolvent of an operator $ A $ |
| + | is an operator $ R _ \lambda $ |
| + | inverse to $ T _ \lambda = A - \lambda I $. |
| + | Here $ A $ |
| + | is a closed linear operator defined on a dense set $ D _ {A} $ |
| + | of a Banach space $ X $ |
| + | with values in the same space and $ \lambda $ |
| + | is such that $ T _ \lambda^{-1} $ |
| + | is a continuous linear operator on $ X $. |
| + | The points $ \lambda $ |
| + | for which the resolvent exists are called regular points of $ A $, |
| + | and the collection of all regular points is the resolvent set $ \rho ( A) $ |
| + | of this operator. The set $ \rho ( A) $ |
| + | is open and on each of its connected components the operator $ R _ \lambda $ |
| + | is an analytic function of the parameter $ \lambda $. |
| | | |
| Properties of a resolvent are: | | Properties of a resolvent are: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160097.png" /> for any two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160098.png" />; | + | 1) $ R _ \lambda - R _ \mu = ( \lambda - \mu ) R _ \lambda R _ \mu $ |
| + | for any two points $ \lambda , \mu \in \rho ( A) $; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r08160099.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r081600100.png" />; | + | 2) $ R _ \lambda x = 0 $ |
| + | implies $ x = 0 $; |
| | | |
− | 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r081600101.png" /> is a Hilbert space, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081600/r081600102.png" />. | + | 3) if $ X $ |
| + | is a Hilbert space, then $ R _ {\overline \lambda \; } = R _ \lambda ^ {*} $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)</TD></TR></table> |
A resolvent of an algebraic equation $ f( x) = 0 $
of degree $ n $
is an algebraic equation $ g( y) = 0 $,
with coefficients that rationally depend on the coefficients of $ f( x) $,
such that, if the roots of this equation are known, the roots of the given equation $ f( x) = 0 $
can be found by solving simpler equations of degrees not exceeding $ n $.
A rational expression $ y = y( x _ {1} \dots x _ {n} ) $
itself is sometimes called a resolvent.
Let $ f( x) $
be a separable polynomial over a field $ k $
with Galois group $ G $,
and let $ H $
be a normal subgroup of $ G $.
Let $ y = y( x _ {1} \dots x _ {n} ) $
be a rational expression in $ x _ {1} \dots x _ {n} $
that remains invariant under all permutations of the roots $ x _ {1} \dots x _ {n} $
belonging to $ H $,
and let $ y \notin k $.
Then $ y $
is a root of some equation $ g( y) = 0 $
with coefficients from $ k $,
the Galois group of which is a proper quotient group of $ G $.
Thus, solving the equation $ f( x) = 0 $
reduces to solving the equation $ g( y) = 0 $
and solving the equation $ f( x) = 0 $
over the field $ k( y _ {1} \dots y _ {s} ) $.
For example, in order to solve an equation of degree $ 4 $:
$$
x ^ {4} + px ^ {2} + qx + r = 0
$$
(every equation of degree $ 4 $
is reducible to this form), the following cubic resolvent is used:
$$
y ^ {3} - 2py ^ {2} + ( p ^ {2} - 4r ) y + q ^ {2} = 0.
$$
Its roots $ y _ {1} , y _ {2} , y _ {3} $
are related to the roots $ x _ {1} , x _ {2} , x _ {3} , x _ {4} $
by the relations $ y _ {1} = ( x _ {1} + x _ {2} )( x _ {3} + x _ {4} ) $,
$ y _ {2} = ( x _ {1} + x _ {3} )( x _ {2} + x _ {4} ) $,
$ y _ {3} = ( x _ {1} + x _ {4} )( x _ {2} + x _ {3} ) $.
The roots $ y _ {1} , y _ {2} , y _ {3} $
are determined by the Cardano formula, which also makes it possible to determine $ x _ {1} , x _ {2} , x _ {3} , x _ {4} $.
Successive application of the resolvent method permits one to solve any equation with a solvable Galois group by reduction to solving a chain of equations with cyclic Galois groups. Lagrange's resolvent is used in solving the latter.
Let $ f( x) = 0 $
be an equation over a field $ k $
with a cyclic Galois group $ G $
of order $ n $,
and let $ k $
contain a primitive $ n $-
th root of unity $ \zeta _ {n} $.
For an element $ \alpha $
which belongs to the splitting field of the polynomial $ f( x) $(
cf. Splitting field of a polynomial), and for a character $ \chi $
from $ G $
into the group of $ n $-
th roots of unity, Lagrange's resolvent $ \rho ( \chi , \alpha ) $
is defined by the formula:
$$ \tag{* }
\rho ( \chi , \alpha ) = \sum _ {\sigma \in G } \chi ( \sigma )^{-1}
\sigma ( \alpha ).
$$
Let $ \alpha = x _ {1} $
be one of the roots of the polynomial $ f( x) $
and let $ \chi $
run through the characters of $ G $.
Then for the system of linear equations (*) the roots $ x _ {1} \dots x _ {n} $
can be determined if the Lagrange resolvents are known for all characters $ \chi $
of $ G $.
For $ \tau \in G $
the relation
$$
\tau \rho ( \chi , \alpha ) = \
\xi ( \tau ) \rho ( \chi , \alpha )
$$
is fulfilled, showing that the elements $ a = \rho ( \chi , \alpha ) ^ {n} $
and $ b _ {i} = \rho ( \chi , \alpha )^{-i} \rho ( \chi ^ {i} , \alpha ) $,
for any integer $ i $,
are invariant under $ G $
and are therefore uniquely defined rational expressions in the coefficients of the polynomial $ f( x) $
and the root $ \zeta _ {n} $.
If $ \chi $
generates the group of characters of $ G $,
then the following equalities hold: $ \rho ( \chi , \alpha ) = a ^ {1/n} $
and $ \rho ( \chi ^ \prime , \alpha ) = b _ {i} \rho ( \chi , \alpha ) ^ {i} $
for $ \chi ^ \prime = \chi ^ {i} $.
Any algebraic equation $ y( x) = 0 $
that is irreducible over a given field (see Galois theory) and that is such that as a result of the adjunction of one of its roots to this field a field is obtained that contains all roots of the equation $ f( x) = 0 $,
is called a Galois resolvent of $ f( x) $.
References
[1] | B.L. van der Waerden, "Algebra" , 1–2 , Springer (1967–1971) (Translated from German) |
L.V. Kuz'min
The resolvent (resolvent kernel) of an integral equation
$$ \tag{** }
\phi ( s) + \lambda \int\limits _ { a } ^ { b } K( s, t) \phi ( t) dt = f( s)
$$
is understood to be a function $ \Gamma ( s, t, \lambda ) $
of the variables $ s, t $
and the parameter $ \lambda $
with the aid of which the solution of equation (**) can be represented in the form:
$$
f( s) + \lambda \int\limits _ { a } ^ { b } \Gamma ( s, t, \lambda ) f( t) dt ,
$$
provided $ \lambda $
is not an eigenvalue of (**). For example, for the kernel $ K( s, t) = s + t $
the resolvent is the function
$$
\Gamma ( s, t, \lambda ) = \
\frac{s+ t - (( s+ t) / 2 - st - 1 / 3 ) \lambda }{1 - \lambda - {
\lambda ^ {2} } / 12 }
.
$$
BSE-3
The resolvent of an operator $ A $
is an operator $ R _ \lambda $
inverse to $ T _ \lambda = A - \lambda I $.
Here $ A $
is a closed linear operator defined on a dense set $ D _ {A} $
of a Banach space $ X $
with values in the same space and $ \lambda $
is such that $ T _ \lambda^{-1} $
is a continuous linear operator on $ X $.
The points $ \lambda $
for which the resolvent exists are called regular points of $ A $,
and the collection of all regular points is the resolvent set $ \rho ( A) $
of this operator. The set $ \rho ( A) $
is open and on each of its connected components the operator $ R _ \lambda $
is an analytic function of the parameter $ \lambda $.
Properties of a resolvent are:
1) $ R _ \lambda - R _ \mu = ( \lambda - \mu ) R _ \lambda R _ \mu $
for any two points $ \lambda , \mu \in \rho ( A) $;
2) $ R _ \lambda x = 0 $
implies $ x = 0 $;
3) if $ X $
is a Hilbert space, then $ R _ {\overline \lambda \; } = R _ \lambda ^ {*} $.
References
[1] | K. Yosida, "Functional analysis" , Springer (1980) |
[2] | N.I. [N.I. Akhiezer] Achieser, I.M. [I.M. Glaz'man] Glasman, "Theorie der linearen Operatoren im Hilbert Raum" , Akademie Verlag (1954) (Translated from Russian) |
[3] | L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian) |