Difference between revisions of "Bessel interpolation formula"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | b0158601.png | ||
| + | $#A+1 = 23 n = 0 | ||
| + | $#C+1 = 23 : ~/encyclopedia/old_files/data/B015/B.0105860 Bessel interpolation formula | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
A formula which is defined as half the sum of the Gauss formula (cf. [[Gauss interpolation formula|Gauss interpolation formula]]) for forward interpolation on the nodes | A formula which is defined as half the sum of the Gauss formula (cf. [[Gauss interpolation formula|Gauss interpolation formula]]) for forward interpolation on the nodes | ||
| − | + | $$ | |
| + | x _ {0} ,\ | ||
| + | x _ {0} + h,\ | ||
| + | x _ {0} - h \dots x _ {0} + nh,\ | ||
| + | x _ {0} - nh,\ | ||
| + | x _ {0} + (n + 1) h , | ||
| + | $$ | ||
| + | |||
| + | at the point $ x = x _ {0} + th $: | ||
| − | + | $$ \tag{1 } | |
| + | G _ {2n + 2 } (x _ {0} + th) = \ | ||
| + | f _ {0} + f _ {1/2} ^ {1} | ||
| + | t + f _ {0} ^ {2} | ||
| − | + | \frac{t (t - 1) }{2!} | |
| + | + \dots + | ||
| + | $$ | ||
| − | + | $$ | |
| + | + | ||
| + | f _ {1/2} ^ {2n + 1 } | ||
| + | \frac{t (t ^ {2} - 1) \dots (t ^ {2} - n ^ {2} ) }{(2n + 1)! } | ||
| + | , | ||
| + | $$ | ||
| − | and the Gauss formula of the same order for backward interpolation with respect to the node | + | and the Gauss formula of the same order for backward interpolation with respect to the node $ x _ {1} = x _ {0} + h $, |
| + | i.e. with respect to the population of nodes | ||
| − | + | $$ | |
| + | x _ {0} + h, x _ {0} ,\ | ||
| + | x _ {0} + 2h,\ | ||
| + | x _ {0} - h \dots x _ {0} + (n + 1) h,\ | ||
| + | x _ {0} - nh: | ||
| + | $$ | ||
| − | + | $$ \tag{2 } | |
| + | G _ {2n + 2 } (x _ {0} + th) = f _ {1} + f _ {1/2} ^ {1} (t - 1) + f _ {1} ^ {2} | ||
| + | \frac{t (t - 1) }{2!} | ||
| + | + \dots + | ||
| + | $$ | ||
| − | + | $$ | |
| + | + | ||
| + | f _ {1/2} ^ {2n + 1 } | ||
| + | \frac{t (t ^ {2} - 1) \dots [t ^ {2} | ||
| + | - (n - 1) ^ {2} ] (t - n) (t - n - 1) }{(2n + 1)! } | ||
| + | . | ||
| + | $$ | ||
Putting | Putting | ||
| − | + | $$ | |
| + | f _ {1/2} ^ {2k} = \ | ||
| + | |||
| + | \frac{(f _ {0} ^ {2k} + f _ {1} ^ {2k} ) }{2} | ||
| + | , | ||
| + | $$ | ||
Bessel's interpolation formula assumes the form ([[#References|[1]]], [[#References|[2]]]): | Bessel's interpolation formula assumes the form ([[#References|[1]]], [[#References|[2]]]): | ||
| − | + | $$ \tag{3 } | |
| + | B _ {2n + 2 } (x _ {0} + th) = | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | = \ | ||
| + | f _ {1/2} + f _ {1/2} ^ {1} \left ( t - { | ||
| + | \frac{1}{2} | ||
| + | } | ||
| + | \right ) + f _ {1/2} ^ {2} | ||
| + | \frac{t (t - 1) }{2!} | ||
| + | + \dots + | ||
| + | $$ | ||
| − | + | $$ | |
| + | + | ||
| + | f _ {1/2} ^ {2n} | ||
| + | \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) }{(2n)!} | ||
| + | + | ||
| + | $$ | ||
| − | + | $$ | |
| + | + | ||
| + | f _ {1/2} ^ {2n + 1 } | ||
| + | \frac{t (t ^ {2} - 1) \dots | ||
| + | [t ^ {2} - (n - 1) ^ {2} ] (t - n) (t - 1/2) }{(2n + 1)! } | ||
| + | . | ||
| + | $$ | ||
| − | + | Bessel's interpolation formula has certain advantages over Gauss' formulas (1), (2); in particular, if the interpolation is at the middle of the segment, i.e. at $ t = 1/2 $, | |
| + | all coefficients at the differences of odd orders vanish. If the last term on the right-hand side of (3) is omitted, the polynomial $ B _ {2n + 1 } (x _ {0} + th) $, | ||
| + | which is not a proper interpolation polynomial (it coincides with $ f(x) $ | ||
| + | only in the $ 2n $ | ||
| + | nodes $ x _ {0} - (n - 1)h \dots x _ {0} + nh $), | ||
| + | represents a better estimate of the residual term (cf. [[Interpolation formula|Interpolation formula]]) than the interpolation polynomial of the same degree. Thus, for instance, if $ x = x _ {0} + th \in (x _ {0} , x _ {1} ) $, | ||
| + | the estimate of the last term using the polynomial which is most frequently employed | ||
| − | + | $$ | |
| + | B _ {3} (x _ {0} + th) = \ | ||
| + | f _ {1/2} + f _ {1/2} ^ {1} | ||
| + | \left ( t - { | ||
| + | \frac{1}{2} | ||
| + | } \right ) + | ||
| + | f _ {1/2} ^ {2} | ||
| − | + | \frac{t (t - 1) }{2} | |
| + | , | ||
| + | $$ | ||
| − | written with respect to the nodes | + | written with respect to the nodes $ x _ {0} - h, x _ {0} , x _ {0} + h, x _ {0} + 2h $, |
| + | is almost 8 times better than that of the interpolation polynomial written with respect to the nodes $ x _ {0} - h, x _ {0} , x _ {0} + h $ | ||
| + | or $ x _ {0} , x _ {0} + h, x _ {0} + 2h $([[#References|[2]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , '''1''' , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.S. Berezin, N.P. Zhidkov, "Computing methods" , '''1''' , Pergamon (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , Addison-Wesley (1956)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , Addison-Wesley (1956)</TD></TR></table> | ||
Latest revision as of 10:58, 29 May 2020
A formula which is defined as half the sum of the Gauss formula (cf. Gauss interpolation formula) for forward interpolation on the nodes
$$ x _ {0} ,\ x _ {0} + h,\ x _ {0} - h \dots x _ {0} + nh,\ x _ {0} - nh,\ x _ {0} + (n + 1) h , $$
at the point $ x = x _ {0} + th $:
$$ \tag{1 } G _ {2n + 2 } (x _ {0} + th) = \ f _ {0} + f _ {1/2} ^ {1} t + f _ {0} ^ {2} \frac{t (t - 1) }{2!} + \dots + $$
$$ + f _ {1/2} ^ {2n + 1 } \frac{t (t ^ {2} - 1) \dots (t ^ {2} - n ^ {2} ) }{(2n + 1)! } , $$
and the Gauss formula of the same order for backward interpolation with respect to the node $ x _ {1} = x _ {0} + h $, i.e. with respect to the population of nodes
$$ x _ {0} + h, x _ {0} ,\ x _ {0} + 2h,\ x _ {0} - h \dots x _ {0} + (n + 1) h,\ x _ {0} - nh: $$
$$ \tag{2 } G _ {2n + 2 } (x _ {0} + th) = f _ {1} + f _ {1/2} ^ {1} (t - 1) + f _ {1} ^ {2} \frac{t (t - 1) }{2!} + \dots + $$
$$ + f _ {1/2} ^ {2n + 1 } \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) (t - n - 1) }{(2n + 1)! } . $$
Putting
$$ f _ {1/2} ^ {2k} = \ \frac{(f _ {0} ^ {2k} + f _ {1} ^ {2k} ) }{2} , $$
Bessel's interpolation formula assumes the form ([1], [2]):
$$ \tag{3 } B _ {2n + 2 } (x _ {0} + th) = $$
$$ = \ f _ {1/2} + f _ {1/2} ^ {1} \left ( t - { \frac{1}{2} } \right ) + f _ {1/2} ^ {2} \frac{t (t - 1) }{2!} + \dots + $$
$$ + f _ {1/2} ^ {2n} \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) }{(2n)!} + $$
$$ + f _ {1/2} ^ {2n + 1 } \frac{t (t ^ {2} - 1) \dots [t ^ {2} - (n - 1) ^ {2} ] (t - n) (t - 1/2) }{(2n + 1)! } . $$
Bessel's interpolation formula has certain advantages over Gauss' formulas (1), (2); in particular, if the interpolation is at the middle of the segment, i.e. at $ t = 1/2 $, all coefficients at the differences of odd orders vanish. If the last term on the right-hand side of (3) is omitted, the polynomial $ B _ {2n + 1 } (x _ {0} + th) $, which is not a proper interpolation polynomial (it coincides with $ f(x) $ only in the $ 2n $ nodes $ x _ {0} - (n - 1)h \dots x _ {0} + nh $), represents a better estimate of the residual term (cf. Interpolation formula) than the interpolation polynomial of the same degree. Thus, for instance, if $ x = x _ {0} + th \in (x _ {0} , x _ {1} ) $, the estimate of the last term using the polynomial which is most frequently employed
$$ B _ {3} (x _ {0} + th) = \ f _ {1/2} + f _ {1/2} ^ {1} \left ( t - { \frac{1}{2} } \right ) + f _ {1/2} ^ {2} \frac{t (t - 1) }{2} , $$
written with respect to the nodes $ x _ {0} - h, x _ {0} , x _ {0} + h, x _ {0} + 2h $, is almost 8 times better than that of the interpolation polynomial written with respect to the nodes $ x _ {0} - h, x _ {0} , x _ {0} + h $ or $ x _ {0} , x _ {0} + h, x _ {0} + 2h $([2]).
References
| [1] | I.S. Berezin, N.P. Zhidkov, "Computing methods" , 1 , Pergamon (1973) (Translated from Russian) |
| [2] | N.S. Bakhvalov, "Numerical methods: analysis, algebra, ordinary differential equations" , MIR (1977) (Translated from Russian) |
Comments
References
| [a1] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1970) |
| [a2] | F.B. Hildebrand, "Introduction to numerical analysis" , Addison-Wesley (1956) |
Bessel interpolation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bessel_interpolation_formula&oldid=12755