Difference between revisions of "Parseval equality"
 (Importing text file)  | 
				|||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!--  | |
| + | p0715901.png  | ||
| + | $#A+1 = 61 n = 0  | ||
| + | $#C+1 = 61 : ~/encyclopedia/old_files/data/P071/P.0701590 Parseval equality  | ||
| + | Automatically converted into TeX, above some diagnostics.  | ||
| + | Please remove this comment and the {{TEX|auto}} line below,  | ||
| + | if TeX found to be correct.  | ||
| + | -->  | ||
| − | + | {{TEX|auto}}  | |
| + | {{TEX|done}}  | ||
| − | + | An equality expressing the square of the norm of an element in a vector space with a scalar product in terms of the square of the moduli of the [[Fourier coefficients|Fourier coefficients]] of this element in some [[Orthogonal system|orthogonal system]]. Thus, if  $  X $  | |
| + | is a normed separable vector space with a scalar product  $  (  , ) $,   | ||
| + | if  $  \| \cdot \| $  | ||
| + | is the corresponding norm and if  $  \{ e _ {n} \} $  | ||
| + | is an orthogonal system in  $  X $,   | ||
| + | $  e _ {n} \neq 0 $,   | ||
| + | $  n = 1, 2 \dots $  | ||
| + | then Parseval's equality for an element  $  x \in X $  | ||
| + | is  | ||
| − | + | $$ \tag{1 }  | |
| + | \| x \|  ^ {2}  =  \sum_{n=1} ^  \infty   | a _ {n} |  ^ {2} \| e _ {n} \|  ^ {2} ,  | ||
| + | $$  | ||
| − | + | where  $  a _ {n} = ( x, e _ {n} )/( e _ {n} , e _ {n} ) $,   | |
| + | $  n = 1, 2 \dots $  | ||
| + | are the Fourier coefficients of  $  x $  | ||
| + | in the system  $  \{ e _ {n} \} $.    | ||
| + | If  $  \{ e _ {n} \} $  | ||
| + | is orthonormal, then Parseval's equality has the form  | ||
| − | + | $$   | |
| + | \| x \|  ^ {2}  =  \sum_{n=1} ^  \infty   | a _ {n} |  ^ {2} .  | ||
| + | $$  | ||
| − | + | The validity of Parseval's equality for a given element  $  x \in X $  | |
| + | is a necessary and sufficient condition for its Fourier series in the orthogonal system  $  \{ e _ {n} \} $  | ||
| + | to converge to  $  x $  | ||
| + | in the norm of  $  X $.    | ||
| + | The validity of Parseval's equality for every element  $  x \in X $  | ||
| + | is a necessary and sufficient condition for the orthogonal system  $  \{ e _ {n} \} $  | ||
| + | to be complete in  $  X $(  | ||
| + | cf. [[Complete system|Complete system]]). This implies, in particular, that:  | ||
| − | + | 1) if  $  X $  | |
| + | is a separable Hilbert space (cf. [[Hilbert space|Hilbert space]]) and  $  \{ e _ {n} \} $  | ||
| + | is an orthogonal basis of it, then Parseval's equality holds for  $  \{ e _ {n} \} $  | ||
| + | for every  $  x \in X $;  | ||
| + | |||
| + | 2) if  $  X $  | ||
| + | is a separable Hilbert space,  $  x , y \in X $,   | ||
| + | if  $  \{ e _ {n} \} $  | ||
| + | is an orthonormal basis of  $  X $  | ||
| + | and if  $  a _ {n} = ( x, e _ {n} ) $  | ||
| + | and  $  b _ {n} = ( y, e _ {n} ) $  | ||
| + | are the Fourier coefficients of  $  x $  | ||
| + | and  $  y $,   | ||
| + | then  | ||
| + | |||
| + | $$ \tag{2 }  | ||
| + | ( x, y)  =  \sum_{n=1} ^  \infty   a _ {n} \overline{ {b _ {n} }}\; ,  | ||
| + | $$  | ||
the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [[#References|[1]]].  | the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [[#References|[1]]].  | ||
| − | Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If   | + | Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If  $  \{ e _  \alpha  \} $,    | 
| + | $  \alpha \in \mathfrak A $(  | ||
| + | $  \mathfrak A $  | ||
| + | is a certain index set), is a complete orthonormal system in a Hilbert space  $  X $,    | ||
| + | then for any element  $  x \in X $  | ||
| + | Parseval's equality holds:  | ||
| − | + | $$   | |
| + | ( x, x)  =  \sum _ {\alpha \in \mathfrak A } | ( x, e _  \alpha  ) |  ^ {2} ,  | ||
| + | $$  | ||
and the sum on the right-hand side is to be understood as  | and the sum on the right-hand side is to be understood as  | ||
| − | + | $$   | |
| + | \sup _ {\mathfrak A _ {0} }  \sum _ {\alpha \in \mathfrak A } | ( x, e _  \alpha  ) |  ^ {2} ,  | ||
| + | $$  | ||
| − | where the supremum is taken over all finite subsets   | + | where the supremum is taken over all finite subsets  $  \mathfrak A _ {0} $  | 
| + | of  $  \mathfrak A $.  | ||
| − | When   | + | When  $  X = L _ {2} [- \pi , \pi ] $,    | 
| + | the space of real-valued functions with Lebesgue-integrable squares on  $  [- \pi , \pi ] $,    | ||
| + | and  $  f \in L _ {2} [- \pi , \pi ] $,    | ||
| + | then one may take the [[Trigonometric system|trigonometric system]] as a complete orthogonal system and  | ||
| − | + | $$   | |
| + | f  \sim    | ||
| + | \frac{a _ {0} }{2}  | ||
| + |  + \sum_{n=1} ^  \infty    | ||
| + | ( a _ {n}  \cos  nx + b _ {n}  \sin  nx),  | ||
| + | $$  | ||
where (1) takes the form  | where (1) takes the form  | ||
| − | + | $$   | |
| + | |||
| + | \frac{1} \pi   | ||
| + |  \int\limits _ {- \pi } ^  \pi   f ^ { 2 } ( t)  dt  = \   | ||
| + | |||
| + | \frac{a _ {0}  ^ {2} }{2}  | ||
| + |  + \sum_{n=1} ^  \infty   ( a _ {n}  ^ {2} + b _ {n}  ^ {2}  | ||
| + | ),  | ||
| + | $$  | ||
which is called the classical Parseval equality. It was proved in 1805 by M. Parseval.  | which is called the classical Parseval equality. It was proved in 1805 by M. Parseval.  | ||
| − | If   | + | If  $  g \in L _ {2} [- \pi , \pi ] $  | 
| + | and  | ||
| − | + | $$   | |
| + | g  \sim    | ||
| + | \frac{a _ {0}  ^  \prime  }{2}  | ||
| + |  + \sum_{n=1} ^  \infty    | ||
| + | ( a _ {n}  ^  \prime   \cos  nx + b _ {n}  ^  \prime   \sin  nx ),  | ||
| + | $$  | ||
then an equality similar to (2) looks as follows:  | then an equality similar to (2) looks as follows:  | ||
| − | + | $$ \tag{3 }  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| + | \frac{1} \pi   | ||
| + |  \int\limits _ {- \pi } ^  \pi   f( t) g( t)  dt  = \   | ||
| − | =  | + | \frac{1}{2}  | 
| + |  a _ {0} a _ {0}  ^  \prime  + \sum_{n=1} ^  \infty   ( a _ {n} a _ {n}  ^  \prime  +  | ||
| + | b _ {n} b _ {n}  ^  \prime  ).  | ||
| + | $$  | ||
| + | Two classes  $  K $  | ||
| + | and  $  K  ^  \prime  $  | ||
| + | of real-valued functions defined on  $  [- \pi , \pi ] $  | ||
| + | and such that for all  $  f \in K $  | ||
| + | and  $  g \in K  ^  \prime  $  | ||
| + | Parseval's equality (3) holds are called complementary. An example of complementary classes are the spaces  $  L _ {p} [- \pi , \pi ] $  | ||
| + | and  $  L _ {q} [- \pi , \pi ] $,   | ||
| + | $  p  ^ {-} 1 + q  ^ {-} 1 = 1 $,   | ||
| + | $  1 < p < + \infty $.  | ||
====References====  | ====References====  | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hewitt,   K.R. Stromberg,   "Real and abstract analysis" , Springer  (1965)</TD></TR></table>  | + | <table>  | 
| + | <TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Steklov,   "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse"  ''Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8'' , '''157'''  (1904)  pp. 1–32</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.M. Nikol'skii,   "A course of mathematical analysis" , '''2''' , MIR  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Il'in,   E.G. Poznyak,   "Fundamentals of mathematical analysis" , '''2''' , MIR  (1982)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,   "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,   "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Kirillov,   A.D. Gvishiani,   "Theorems and problems in functional analysis" , Springer  (1982)  (Translated from Russian)</TD></TR>  | ||
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top">  E. Hewitt,   K.R. Stromberg,   "Real and abstract analysis" , Springer  (1965)</TD></TR>  | ||
| + | </table>  | ||
Latest revision as of 12:50, 6 January 2024
An equality expressing the square of the norm of an element in a vector space with a scalar product in terms of the square of the moduli of the Fourier coefficients of this element in some orthogonal system. Thus, if  $  X $
is a normed separable vector space with a scalar product  $  (  , ) $, 
if  $  \| \cdot \| $
is the corresponding norm and if  $  \{ e _ {n} \} $
is an orthogonal system in  $  X $, 
$  e _ {n} \neq 0 $, 
$  n = 1, 2 \dots $
then Parseval's equality for an element  $  x \in X $
is
$$ \tag{1 } \| x \| ^ {2} = \sum_{n=1} ^ \infty | a _ {n} | ^ {2} \| e _ {n} \| ^ {2} , $$
where $ a _ {n} = ( x, e _ {n} )/( e _ {n} , e _ {n} ) $, $ n = 1, 2 \dots $ are the Fourier coefficients of $ x $ in the system $ \{ e _ {n} \} $. If $ \{ e _ {n} \} $ is orthonormal, then Parseval's equality has the form
$$ \| x \| ^ {2} = \sum_{n=1} ^ \infty | a _ {n} | ^ {2} . $$
The validity of Parseval's equality for a given element $ x \in X $ is a necessary and sufficient condition for its Fourier series in the orthogonal system $ \{ e _ {n} \} $ to converge to $ x $ in the norm of $ X $. The validity of Parseval's equality for every element $ x \in X $ is a necessary and sufficient condition for the orthogonal system $ \{ e _ {n} \} $ to be complete in $ X $( cf. Complete system). This implies, in particular, that:
1) if $ X $ is a separable Hilbert space (cf. Hilbert space) and $ \{ e _ {n} \} $ is an orthogonal basis of it, then Parseval's equality holds for $ \{ e _ {n} \} $ for every $ x \in X $;
2) if $ X $ is a separable Hilbert space, $ x , y \in X $, if $ \{ e _ {n} \} $ is an orthonormal basis of $ X $ and if $ a _ {n} = ( x, e _ {n} ) $ and $ b _ {n} = ( y, e _ {n} ) $ are the Fourier coefficients of $ x $ and $ y $, then
$$ \tag{2 } ( x, y) = \sum_{n=1} ^ \infty a _ {n} \overline{ {b _ {n} }}\; , $$
the so-called generalized Parseval equality. In a fairly-definitive form the question of the completeness of a system of functions that are the eigen functions of differential operators was studied by V.A. Steklov in [1].
Parseval's equality can also be generalized to the case of non-separable Hilbert spaces: If $ \{ e _ \alpha \} $, $ \alpha \in \mathfrak A $( $ \mathfrak A $ is a certain index set), is a complete orthonormal system in a Hilbert space $ X $, then for any element $ x \in X $ Parseval's equality holds:
$$ ( x, x) = \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , $$
and the sum on the right-hand side is to be understood as
$$ \sup _ {\mathfrak A _ {0} } \sum _ {\alpha \in \mathfrak A } | ( x, e _ \alpha ) | ^ {2} , $$
where the supremum is taken over all finite subsets $ \mathfrak A _ {0} $ of $ \mathfrak A $.
When $ X = L _ {2} [- \pi , \pi ] $, the space of real-valued functions with Lebesgue-integrable squares on $ [- \pi , \pi ] $, and $ f \in L _ {2} [- \pi , \pi ] $, then one may take the trigonometric system as a complete orthogonal system and
$$ f \sim \frac{a _ {0} }{2} + \sum_{n=1} ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx), $$
where (1) takes the form
$$ \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ^ { 2 } ( t) dt = \ \frac{a _ {0} ^ {2} }{2} + \sum_{n=1} ^ \infty ( a _ {n} ^ {2} + b _ {n} ^ {2} ), $$
which is called the classical Parseval equality. It was proved in 1805 by M. Parseval.
If $ g \in L _ {2} [- \pi , \pi ] $ and
$$ g \sim \frac{a _ {0} ^ \prime }{2} + \sum_{n=1} ^ \infty ( a _ {n} ^ \prime \cos nx + b _ {n} ^ \prime \sin nx ), $$
then an equality similar to (2) looks as follows:
$$ \tag{3 } \frac{1} \pi \int\limits _ {- \pi } ^ \pi f( t) g( t) dt = \ \frac{1}{2} a _ {0} a _ {0} ^ \prime + \sum_{n=1} ^ \infty ( a _ {n} a _ {n} ^ \prime + b _ {n} b _ {n} ^ \prime ). $$
Two classes $ K $ and $ K ^ \prime $ of real-valued functions defined on $ [- \pi , \pi ] $ and such that for all $ f \in K $ and $ g \in K ^ \prime $ Parseval's equality (3) holds are called complementary. An example of complementary classes are the spaces $ L _ {p} [- \pi , \pi ] $ and $ L _ {q} [- \pi , \pi ] $, $ p ^ {-} 1 + q ^ {-} 1 = 1 $, $ 1 < p < + \infty $.
References
| [1] | V.A. Steklov, "Sur certaines égalités générales communes à plusieurs séries de fonctions souvent employées dans l'analyse" Zap. Nauchn. Fiz.-Mat. Obshch. Ser. 8 , 157 (1904) pp. 1–32 | 
| [2] | S.M. Nikol'skii, "A course of mathematical analysis" , 2 , MIR (1977) (Translated from Russian) | 
| [3] | V.A. Il'in, E.G. Poznyak, "Fundamentals of mathematical analysis" , 2 , MIR (1982) (Translated from Russian) | 
| [4] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) | 
| [5] | A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988) | 
| [6] | A.A. Kirillov, A.D. Gvishiani, "Theorems and problems in functional analysis" , Springer (1982) (Translated from Russian) | 
| [a1] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) | 
Parseval equality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parseval_equality&oldid=11840