|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ''local uniformizer, local parameter''
| + | <!-- |
| + | l0602401.png |
| + | $#A+1 = 62 n = 0 |
| + | $#C+1 = 62 : ~/encyclopedia/old_files/data/L060/L.0600240 Local uniformizing parameter, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602401.png" /> defined as a continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602402.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602403.png" /> on a [[Riemann surface|Riemann surface]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602404.png" />, defined everywhere in some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602405.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602406.png" /> and realizing a homeomorphic mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602407.png" /> onto the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602408.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l0602409.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024010.png" /> is said to be a distinguished or parametric neighbourhood, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024011.png" /> a distinguished or parametric mapping, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024012.png" /> a distinguished or parametric disc. Under a parametric mapping any point function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024013.png" />, defined in a parametric neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024014.png" />, goes into a function of the local uniformizing parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024015.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024016.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024018.png" /> are two parametric neighbourhoods such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024021.png" /> are the two corresponding local uniformizing parameters, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024022.png" /> is a univalent holomorphic function on some subdomain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024023.png" /> realizing a biholomorphic mapping of this subdomain into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024024.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024025.png" /> is the Riemann surface of an analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024027.png" /> is a regular element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024028.png" /> with projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024029.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024030.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024031.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024033.png" /> is a singular, or algebraic, element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024034.png" />, corresponding to the [[Branch point|branch point]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024035.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024036.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024037.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024039.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024040.png" />. In a parametric neighbourhood of an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024041.png" /> the local uniformizing parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024042.png" /> actually realizes a local [[Uniformization|uniformization]], generally speaking, of the many-valued relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024043.png" />, according to the formulas (for example, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024044.png" />):
| + | ''local uniformizer, local parameter'' |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024045.png" /></td> </tr></table>
| |
− | | |
− | In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024046.png" /> is a Riemann surface with boundary, for points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024047.png" /> belonging to the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024048.png" /> the local uniformizing parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024049.png" /> maps the parametric neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024050.png" /> onto the half-disc
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024051.png" /></td> </tr></table>
| + | A complex variable $ t $ |
| + | defined as a continuous function $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $ |
| + | of a point $ p $ |
| + | on a [[Riemann surface|Riemann surface]] $ R $, |
| + | defined everywhere in some neighbourhood $ V ( p _ {0} ) $ |
| + | of a point $ p _ {0} \in R $ |
| + | and realizing a homeomorphic mapping of $ V ( p _ {0} ) $ |
| + | onto the disc $ D ( p _ {0} ) = \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) } \} $, |
| + | where $ \phi _ {p _ {0} } ( p _ {0} ) = 0 $. |
| + | Here $ V ( p _ {0} ) $ |
| + | is said to be a distinguished or parametric neighbourhood, $ \phi _ {p _ {0} } : V ( p _ {0} ) \rightarrow D ( p _ {0} ) $ |
| + | a distinguished or parametric mapping, and $ D ( p _ {0} ) $ |
| + | a distinguished or parametric disc. Under a parametric mapping any point function $ g ( p) $, |
| + | defined in a parametric neighbourhood $ V ( p _ {0} ) $, |
| + | goes into a function of the local uniformizing parameter $ t $, |
| + | that is, $ g ( p) = g [ \phi _ {p _ {0} } ^ {- 1} ( t) ] = G ( t) $. |
| + | If $ V ( p _ {0} ) $ |
| + | and $ V ( p _ {1} ) $ |
| + | are two parametric neighbourhoods such that $ V ( p _ {0} ) \cap V ( p _ {1} ) \neq \emptyset $, |
| + | and $ t _ {p _ {0} } $ |
| + | and $ t _ {p _ {1} } $ |
| + | are the two corresponding local uniformizing parameters, then $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {- 1} ( t _ {p _ {0} } )] $ |
| + | is a univalent holomorphic function on some subdomain of $ D ( p _ {0} ) $ |
| + | realizing a biholomorphic mapping of this subdomain into $ D ( p _ {1} ) $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024052.png" /> is a a [[Riemannian domain|Riemannian domain]] over a complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024054.png" />, then the local uniformizing parameter | + | If $ R = R _ {F} $ |
| + | is the Riemann surface of an analytic function $ w = F ( z) $ |
| + | and $ p _ {0} $ |
| + | is a regular element of $ F ( z) $ |
| + | with projection $ z _ {0} \neq \infty $, |
| + | then $ t _ {p _ {0} } = z - z _ {0} $; |
| + | $ t _ {p _ {0} } = 1 / z $ |
| + | for $ z _ {0} = \infty $. |
| + | If $ p _ {0} $ |
| + | is a singular, or algebraic, element of $ F ( z) $, |
| + | corresponding to the [[Branch point|branch point]] $ z _ {0} $ |
| + | of order $ k - 1 > 0 $, |
| + | then $ t _ {p _ {0} } = ( z - z _ {0} ) ^ {1/k} $ |
| + | for $ z _ {0} \neq \infty $ |
| + | and $ t _ {p _ {0} } = 1 / z ^ {1/k} $ |
| + | for $ z _ {0} = \infty $. |
| + | In a parametric neighbourhood of an element $ p _ {0} $ |
| + | the local uniformizing parameter $ t $ |
| + | actually realizes a local [[Uniformization|uniformization]], generally speaking, of the many-valued relation $ w = F ( z) $, |
| + | according to the formulas (for example, for $ z _ {0} \neq \infty $): |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024055.png" /></td> </tr></table>
| + | $$ |
| + | z = z _ {0} + t ^ {k} ,\ \ |
| + | w = F ( z _ {0} + t ^ {k} ) = w ( t) ,\ \ |
| + | k \geq 1 . |
| + | $$ |
| | | |
− | realizes a homeomorphic mapping of the parametric neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024056.png" /> onto the polydisc
| + | In the case when $ R $ |
| + | is a Riemann surface with boundary, for points $ p _ {0} $ |
| + | belonging to the boundary of $ R $ |
| + | the local uniformizing parameter $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $ |
| + | maps the parametric neighbourhood $ V ( p _ {0} ) $ |
| + | onto the half-disc |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024057.png" /></td> </tr></table>
| + | $$ |
| + | D ( p _ {0} ) = \ |
| + | \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) , \mathop{\rm Im} t \geq 0 } \} |
| + | . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024058.png" /></td> </tr></table>
| + | If $ R $ |
| + | is a a [[Riemannian domain|Riemannian domain]] over a complex space $ \mathbf C ^ {n} $, |
| + | $ n > 1 $, |
| + | then the local uniformizing parameter |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024059.png" /> is not empty, then the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024060.png" /> biholomorphically maps a certain subdomain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024061.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060240/l06024062.png" />.
| + | $$ |
− | | + | t _ {p _ {0} } = \ |
− | ====References====
| + | \phi _ {p _ {0} } ( p) = \ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR></table>
| + | ( t _ {1} \dots t _ {n} ) _ {p _ {0} } = \ |
| + | ( \phi _ {1} ( p) \dots \phi _ {n} ( p) ) _ {p _ {0} } |
| + | $$ |
| | | |
| + | realizes a homeomorphic mapping of the parametric neighbourhood $ V ( p _ {0} ) $ |
| + | onto the polydisc |
| | | |
| + | $$ |
| + | D ( p _ {0} ) = |
| + | $$ |
| | | |
− | ====Comments==== | + | $$ |
| + | = \ |
| + | \{ t = ( t _ {1} \dots t _ {n} ) \in \mathbf C ^ {n} : | t _ {1} | < r _ {1} ( p _ {0} ) \dots |
| + | | t _ {n} | < r _ {n} ( p _ {0} ) \} . |
| + | $$ |
| | | |
| + | If $ V ( p _ {0} ) \cap V ( p _ {1} ) $ |
| + | is not empty, then the mapping $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {- 1} ( t _ {p _ {0} } ) ] $ |
| + | biholomorphically maps a certain subdomain of $ D ( p _ {0} ) $ |
| + | into $ D ( p _ {1} ) $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980)</TD></TR> |
| + | </table> |
local uniformizer, local parameter
A complex variable $ t $
defined as a continuous function $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $
of a point $ p $
on a Riemann surface $ R $,
defined everywhere in some neighbourhood $ V ( p _ {0} ) $
of a point $ p _ {0} \in R $
and realizing a homeomorphic mapping of $ V ( p _ {0} ) $
onto the disc $ D ( p _ {0} ) = \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) } \} $,
where $ \phi _ {p _ {0} } ( p _ {0} ) = 0 $.
Here $ V ( p _ {0} ) $
is said to be a distinguished or parametric neighbourhood, $ \phi _ {p _ {0} } : V ( p _ {0} ) \rightarrow D ( p _ {0} ) $
a distinguished or parametric mapping, and $ D ( p _ {0} ) $
a distinguished or parametric disc. Under a parametric mapping any point function $ g ( p) $,
defined in a parametric neighbourhood $ V ( p _ {0} ) $,
goes into a function of the local uniformizing parameter $ t $,
that is, $ g ( p) = g [ \phi _ {p _ {0} } ^ {- 1} ( t) ] = G ( t) $.
If $ V ( p _ {0} ) $
and $ V ( p _ {1} ) $
are two parametric neighbourhoods such that $ V ( p _ {0} ) \cap V ( p _ {1} ) \neq \emptyset $,
and $ t _ {p _ {0} } $
and $ t _ {p _ {1} } $
are the two corresponding local uniformizing parameters, then $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {- 1} ( t _ {p _ {0} } )] $
is a univalent holomorphic function on some subdomain of $ D ( p _ {0} ) $
realizing a biholomorphic mapping of this subdomain into $ D ( p _ {1} ) $.
If $ R = R _ {F} $
is the Riemann surface of an analytic function $ w = F ( z) $
and $ p _ {0} $
is a regular element of $ F ( z) $
with projection $ z _ {0} \neq \infty $,
then $ t _ {p _ {0} } = z - z _ {0} $;
$ t _ {p _ {0} } = 1 / z $
for $ z _ {0} = \infty $.
If $ p _ {0} $
is a singular, or algebraic, element of $ F ( z) $,
corresponding to the branch point $ z _ {0} $
of order $ k - 1 > 0 $,
then $ t _ {p _ {0} } = ( z - z _ {0} ) ^ {1/k} $
for $ z _ {0} \neq \infty $
and $ t _ {p _ {0} } = 1 / z ^ {1/k} $
for $ z _ {0} = \infty $.
In a parametric neighbourhood of an element $ p _ {0} $
the local uniformizing parameter $ t $
actually realizes a local uniformization, generally speaking, of the many-valued relation $ w = F ( z) $,
according to the formulas (for example, for $ z _ {0} \neq \infty $):
$$
z = z _ {0} + t ^ {k} ,\ \
w = F ( z _ {0} + t ^ {k} ) = w ( t) ,\ \
k \geq 1 .
$$
In the case when $ R $
is a Riemann surface with boundary, for points $ p _ {0} $
belonging to the boundary of $ R $
the local uniformizing parameter $ t _ {p _ {0} } = \phi _ {p _ {0} } ( p) $
maps the parametric neighbourhood $ V ( p _ {0} ) $
onto the half-disc
$$
D ( p _ {0} ) = \
\{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) , \mathop{\rm Im} t \geq 0 } \}
.
$$
If $ R $
is a a Riemannian domain over a complex space $ \mathbf C ^ {n} $,
$ n > 1 $,
then the local uniformizing parameter
$$
t _ {p _ {0} } = \
\phi _ {p _ {0} } ( p) = \
( t _ {1} \dots t _ {n} ) _ {p _ {0} } = \
( \phi _ {1} ( p) \dots \phi _ {n} ( p) ) _ {p _ {0} }
$$
realizes a homeomorphic mapping of the parametric neighbourhood $ V ( p _ {0} ) $
onto the polydisc
$$
D ( p _ {0} ) =
$$
$$
= \
\{ t = ( t _ {1} \dots t _ {n} ) \in \mathbf C ^ {n} : | t _ {1} | < r _ {1} ( p _ {0} ) \dots
| t _ {n} | < r _ {n} ( p _ {0} ) \} .
$$
If $ V ( p _ {0} ) \cap V ( p _ {1} ) $
is not empty, then the mapping $ t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {- 1} ( t _ {p _ {0} } ) ] $
biholomorphically maps a certain subdomain of $ D ( p _ {0} ) $
into $ D ( p _ {1} ) $.
References
[1] | A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian) |
[2] | G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 |
[3] | B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian) |
[a1] | H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980) |