|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476702.png" />''
| + | <!-- |
| + | h0476702.png |
| + | $#A+1 = 39 n = 0 |
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/H047/H.0407670 Homogeneous function |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476703.png" /> such that for all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476704.png" /> in its domain of definition and all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476705.png" />, the equation
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476706.png" /></td> </tr></table>
| + | ''of degree $ \lambda $'' |
| | | |
− | holds, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476707.png" /> is a real number; here it is assumed that for every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476708.png" /> in the domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h0476709.png" />, the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767010.png" /> also belongs to this domain for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767011.png" />. If
| + | A function $ f $ |
| + | such that for all points $ ( x _ {1} \dots x _ {n} ) $ |
| + | in its domain of definition and all real $ t > 0 $, |
| + | the equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767012.png" /></td> </tr></table>
| + | $$ |
| + | f ( t x _ {1} \dots t x _ {n} ) = \ |
| + | t ^ \lambda f ( x _ {1} \dots x _ {n} ) |
| + | $$ |
| | | |
− | that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767013.png" /> is a polynomial of degree not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767015.png" /> is a homogeneous function of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767016.png" /> if and only if all the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767017.png" /> are zero for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767018.png" />. The concept of a homogeneous function can be extended to polynomials in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767019.png" /> variables over an arbitrary commutative ring with an identity.
| + | holds, where $ \lambda $ |
| + | is a real number; here it is assumed that for every point $ ( x _ {1} \dots x _ {n} ) $ |
| + | in the domain of $ f $, |
| + | the point $ ( t x _ {1} \dots t x _ {n} ) $ |
| + | also belongs to this domain for any $ t > 0 $. |
| + | If |
| | | |
− | Suppose that the domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767021.png" /> lies in the first quadrant, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767022.png" />, and contains the whole ray <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767024.png" />, whenever it contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767025.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767026.png" /> is homogeneous of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767027.png" /> if and only if there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767028.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767029.png" /> variables, defined on the set of points of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767030.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767031.png" />, such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767032.png" />,
| + | $$ |
| + | f ( x _ {1} \dots x _ {n} ) = \ |
| + | \sum _ {0 \leq k _ {1} + \dots + k _ {n} \leq m } |
| + | a _ {k _ {1} \dots k _ {n} } |
| + | x _ {1} ^ {k _ {1} } \dots x _ {n} ^ {k _ {n} } , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767033.png" /></td> </tr></table> | + | that is, $ f $ |
| + | is a polynomial of degree not exceeding $ m $, |
| + | then $ f $ |
| + | is a homogeneous function of degree $ m $ |
| + | if and only if all the coefficients $ a _ {k _ {1} \dots k _ {n} } $ |
| + | are zero for $ k _ {1} + \dots + k _ {n} < m $. |
| + | The concept of a homogeneous function can be extended to polynomials in $ n $ |
| + | variables over an arbitrary commutative ring with an identity. |
| | | |
− | If the domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767035.png" /> is an open set and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767036.png" /> is continuously differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767037.png" />, then the function is homogeneous of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767038.png" /> if and only if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767039.png" /> in its domain of definition it satisfies the Euler formula
| + | Suppose that the domain of definition $ E $ |
| + | of $ f $ |
| + | lies in the first quadrant, $ x _ {1} > 0 \dots x _ {n} > 0 $, |
| + | and contains the whole ray $ ( t x _ {1} \dots t x _ {n} ) $, |
| + | $ t > 0 $, |
| + | whenever it contains $ ( x _ {1} \dots x _ {n} ) $. |
| + | Then $ f $ |
| + | is homogeneous of degree $ \lambda $ |
| + | if and only if there exists a function $ \phi $ |
| + | of $ n- 1 $ |
| + | variables, defined on the set of points of the form $ ( x _ {2} / x _ {1} \dots x _ {n} / x _ {1} ) $ |
| + | where $ ( x _ {1} \dots x _ {n} ) \in E $, |
| + | such that for all $ ( x _ {1} \dots x _ {n} ) \in E $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047670/h04767040.png" /></td> </tr></table>
| + | $$ |
| + | f ( x _ {1} \dots x _ {n} ) = \ |
| + | x _ {1} ^ \lambda \phi |
| + | \left ( |
| + | |
| + | { |
| + | \frac{x _ 2}{x _ 1} |
| + | } |
| + | \dots |
| + | |
| + | { |
| + | \frac{x _ n}{x _ 1} |
| + | } |
| + | \right ) . |
| + | $$ |
| + | |
| + | If the domain of definition $ E $ |
| + | of $ f $ |
| + | is an open set and $ f $ |
| + | is continuously differentiable on $ E $, |
| + | then the function is homogeneous of degree $ \lambda $ |
| + | if and only if for all $ ( x _ {1} \dots x _ {n} ) $ |
| + | in its domain of definition it satisfies the Euler formula |
| + | |
| + | $$ |
| + | \sum _ { i=1 } ^ { n } |
| + | x _ {i} |
| + | \frac{\partial f ( x _ {1} \dots x _ {n} ) }{\partial x _ {i} } |
| + | = \ |
| + | \lambda f ( x _ {1} \dots x _ {n} ) . |
| + | $$ |
of degree $ \lambda $
A function $ f $
such that for all points $ ( x _ {1} \dots x _ {n} ) $
in its domain of definition and all real $ t > 0 $,
the equation
$$
f ( t x _ {1} \dots t x _ {n} ) = \
t ^ \lambda f ( x _ {1} \dots x _ {n} )
$$
holds, where $ \lambda $
is a real number; here it is assumed that for every point $ ( x _ {1} \dots x _ {n} ) $
in the domain of $ f $,
the point $ ( t x _ {1} \dots t x _ {n} ) $
also belongs to this domain for any $ t > 0 $.
If
$$
f ( x _ {1} \dots x _ {n} ) = \
\sum _ {0 \leq k _ {1} + \dots + k _ {n} \leq m }
a _ {k _ {1} \dots k _ {n} }
x _ {1} ^ {k _ {1} } \dots x _ {n} ^ {k _ {n} } ,
$$
that is, $ f $
is a polynomial of degree not exceeding $ m $,
then $ f $
is a homogeneous function of degree $ m $
if and only if all the coefficients $ a _ {k _ {1} \dots k _ {n} } $
are zero for $ k _ {1} + \dots + k _ {n} < m $.
The concept of a homogeneous function can be extended to polynomials in $ n $
variables over an arbitrary commutative ring with an identity.
Suppose that the domain of definition $ E $
of $ f $
lies in the first quadrant, $ x _ {1} > 0 \dots x _ {n} > 0 $,
and contains the whole ray $ ( t x _ {1} \dots t x _ {n} ) $,
$ t > 0 $,
whenever it contains $ ( x _ {1} \dots x _ {n} ) $.
Then $ f $
is homogeneous of degree $ \lambda $
if and only if there exists a function $ \phi $
of $ n- 1 $
variables, defined on the set of points of the form $ ( x _ {2} / x _ {1} \dots x _ {n} / x _ {1} ) $
where $ ( x _ {1} \dots x _ {n} ) \in E $,
such that for all $ ( x _ {1} \dots x _ {n} ) \in E $,
$$
f ( x _ {1} \dots x _ {n} ) = \
x _ {1} ^ \lambda \phi
\left (
{
\frac{x _ 2}{x _ 1}
}
\dots
{
\frac{x _ n}{x _ 1}
}
\right ) .
$$
If the domain of definition $ E $
of $ f $
is an open set and $ f $
is continuously differentiable on $ E $,
then the function is homogeneous of degree $ \lambda $
if and only if for all $ ( x _ {1} \dots x _ {n} ) $
in its domain of definition it satisfies the Euler formula
$$
\sum _ { i=1 } ^ { n }
x _ {i}
\frac{\partial f ( x _ {1} \dots x _ {n} ) }{\partial x _ {i} }
= \
\lambda f ( x _ {1} \dots x _ {n} ) .
$$