Namespaces
Variants
Actions

Difference between revisions of "Conditional distribution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0244801.png
 +
$#A+1 = 58 n = 0
 +
$#C+1 = 58 : ~/encyclopedia/old_files/data/C024/C.0204480 Conditional distribution
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A function of an elementary event and a Borel set, which for each fixed elementary event is a [[Probability distribution|probability distribution]] and for each fixed Borel set is a [[Conditional probability|conditional probability]].
 
A function of an elementary event and a Borel set, which for each fixed elementary event is a [[Probability distribution|probability distribution]] and for each fixed Borel set is a [[Conditional probability|conditional probability]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244801.png" /> be a probability space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244802.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244803.png" />-algebra of Borel sets on the line, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244804.png" /> a random variable defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244805.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244806.png" /> a sub-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244807.png" />-algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244808.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c0244809.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448010.png" /> is called a (regular) conditional distribution of the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448011.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448012.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448013.png" /> if:
+
Let $  ( \Omega , {\mathcal A} , {\mathsf P} ) $
 +
be a probability space, $  \mathfrak B $
 +
the $  \sigma $-
 +
algebra of Borel sets on the line, $  X $
 +
a random variable defined on $  ( \Omega , {\mathcal A} ) $
 +
and $  \mathfrak F $
 +
a sub- $  \sigma $-
 +
algebra of $  {\mathcal A} $.  
 +
A function $  Q ( \omega , B ) $
 +
defined on $  \Omega \times \mathfrak B $
 +
is called a (regular) conditional distribution of the random variable $  X $
 +
with respect to the $  \sigma $-
 +
algebra $  \mathfrak F $
 +
if:
 +
 
 +
a) for fixed  $  B \in \mathfrak B $
 +
the function  $  Q ( \omega , B ) $
 +
is  $  \mathfrak F $-
 +
measurable;
  
a) for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448014.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448015.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448016.png" />-measurable;
+
b) with probability one, for fixed $  \omega $
 +
the function $  Q ( \omega , B ) $
 +
is a probability measure on  $  \mathfrak B $;
  
b) with probability one, for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448017.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448018.png" /> is a probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448019.png" />;
+
c) for arbitrary  $  F \in \mathfrak F $,
  
c) for arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448020.png" />,
+
$$
 +
\int\limits _ { F } Q
 +
( \omega , B ) {\mathsf P}
 +
( d \omega ) = {\mathsf P}
 +
\{ ( X \in B ) \cap F \} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448021.png" /></td> </tr></table>
+
Similarly one can define the conditional distribution of a random element  $  \mathfrak J $
 +
with values in an arbitrary measurable space  $  ( \mathfrak X , \mathfrak B ) $.
 +
If  $  \mathfrak X $
 +
is a complete separable metric space and  $  \mathfrak B $
 +
is the  $  \sigma $-
 +
algebra of Borel sets, then the conditional distribution of the random element  $  \mathfrak J $
 +
relative to any  $  \sigma $-
 +
algebra  $  \mathfrak F $,
 +
$  \mathfrak F \subset  {\mathcal A} $,
 +
exists.
  
Similarly one can define the conditional distribution of a random element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448022.png" /> with values in an arbitrary measurable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448024.png" /> is a complete separable metric space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448025.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448026.png" />-algebra of Borel sets, then the conditional distribution of the random element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448027.png" /> relative to any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448028.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448030.png" />, exists.
+
The function  $  F _ {X} ( x \mid  \mathfrak F ) = Q ( \omega , ( - \infty , x ] ) $
 +
is called the conditional distribution function of the random variable  $  X $
 +
with respect to the  $  \sigma $-
 +
algebra $  \mathfrak F $.
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448031.png" /> is called the conditional distribution function of the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448032.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448033.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448034.png" />.
+
The conditional distribution (conditional distribution function) of a random variable  $  X $
 +
with respect to a random variable  $  Y $
 +
is defined as the conditional distribution (conditional distribution function) of $  X $
 +
with respect to the $  \sigma $-
 +
algebra generated by  $  Y $.
  
The conditional distribution (conditional distribution function) of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448035.png" /> with respect to a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448036.png" /> is defined as the conditional distribution (conditional distribution function) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448037.png" /> with respect to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448038.png" />-algebra generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448039.png" />.
+
The conditional distribution function  $  F _ {X} ( x \mid  Y ) $
 +
of a random variable $  X $
 +
with respect to $  Y $
 +
is a Borel function of  $  Y $;
 +
for  $  Y = y $
 +
its value  $  F _ {X} ( x \mid  Y = y ) $
 +
is called the conditional distribution function of $  X $
 +
for a fixed value of  $  Y $.  
 +
If  $  Y $
 +
has a density  $  f _ {Y} ( y) $,
 +
then
  
The conditional distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448040.png" /> of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448041.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448042.png" /> is a Borel function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448043.png" />; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448044.png" /> its value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448045.png" /> is called the conditional distribution function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448046.png" /> for a fixed value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448047.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448048.png" /> has a density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448049.png" />, then
+
$$
 +
F _ {X} ( x \mid  Y = y )  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448050.png" /></td> </tr></table>
+
\frac{1}{f _ {Y} ( y) }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448051.png" /> is the joint distribution function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448053.png" />.
+
\frac \partial {\partial  y }
 +
 
 +
F _ {X,Y} ( x , y ) ,
 +
$$
 +
 
 +
where $  F _ {X,Y} ( x , y ) $
 +
is the joint distribution function of $  X $
 +
and $  Y $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.V. [Yu.V. Prokhorov] Prohorov,  Yu.A. Rozanov,  "Probability theory, basic concepts. Limit theorems, random processes" , Springer  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Loève,  "Probability theory" , Princeton Univ. Press  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,  A.V. [A.V. Skorokhod] Skorohod,  "The theory of stochastic processes" , '''1''' , Springer  (1974)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Yu.V. [Yu.V. Prokhorov] Prohorov,  Yu.A. Rozanov,  "Probability theory, basic concepts. Limit theorems, random processes" , Springer  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Loève,  "Probability theory" , Princeton Univ. Press  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,  A.V. [A.V. Skorokhod] Skorohod,  "The theory of stochastic processes" , '''1''' , Springer  (1974)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Another definition of a conditional distribution is as a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448054.png" /> of a [[Regular event|regular event]] and a [[Borel set|Borel set]] such that, for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448056.png" /> is a [[Probability measure|probability measure]] and, for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024480/c02448058.png" /> is a [[Measurable function|measurable function]].
+
Another definition of a conditional distribution is as a function $  f ( \omega , B ) $
 +
of a [[Regular event|regular event]] and a [[Borel set|Borel set]] such that, for fixed $  \omega $,  
 +
$  f ( \omega , \cdot ) $
 +
is a [[Probability measure|probability measure]] and, for fixed $  B $,
 +
$  f ( \cdot , B ) $
 +
is a [[Measurable function|measurable function]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.P. Breiman,  "Probability" , Addison-Wesley  (1968)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.P. Breiman,  "Probability" , Addison-Wesley  (1968)</TD></TR></table>

Latest revision as of 17:46, 4 June 2020


A function of an elementary event and a Borel set, which for each fixed elementary event is a probability distribution and for each fixed Borel set is a conditional probability.

Let $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ be a probability space, $ \mathfrak B $ the $ \sigma $- algebra of Borel sets on the line, $ X $ a random variable defined on $ ( \Omega , {\mathcal A} ) $ and $ \mathfrak F $ a sub- $ \sigma $- algebra of $ {\mathcal A} $. A function $ Q ( \omega , B ) $ defined on $ \Omega \times \mathfrak B $ is called a (regular) conditional distribution of the random variable $ X $ with respect to the $ \sigma $- algebra $ \mathfrak F $ if:

a) for fixed $ B \in \mathfrak B $ the function $ Q ( \omega , B ) $ is $ \mathfrak F $- measurable;

b) with probability one, for fixed $ \omega $ the function $ Q ( \omega , B ) $ is a probability measure on $ \mathfrak B $;

c) for arbitrary $ F \in \mathfrak F $,

$$ \int\limits _ { F } Q ( \omega , B ) {\mathsf P} ( d \omega ) = {\mathsf P} \{ ( X \in B ) \cap F \} . $$

Similarly one can define the conditional distribution of a random element $ \mathfrak J $ with values in an arbitrary measurable space $ ( \mathfrak X , \mathfrak B ) $. If $ \mathfrak X $ is a complete separable metric space and $ \mathfrak B $ is the $ \sigma $- algebra of Borel sets, then the conditional distribution of the random element $ \mathfrak J $ relative to any $ \sigma $- algebra $ \mathfrak F $, $ \mathfrak F \subset {\mathcal A} $, exists.

The function $ F _ {X} ( x \mid \mathfrak F ) = Q ( \omega , ( - \infty , x ] ) $ is called the conditional distribution function of the random variable $ X $ with respect to the $ \sigma $- algebra $ \mathfrak F $.

The conditional distribution (conditional distribution function) of a random variable $ X $ with respect to a random variable $ Y $ is defined as the conditional distribution (conditional distribution function) of $ X $ with respect to the $ \sigma $- algebra generated by $ Y $.

The conditional distribution function $ F _ {X} ( x \mid Y ) $ of a random variable $ X $ with respect to $ Y $ is a Borel function of $ Y $; for $ Y = y $ its value $ F _ {X} ( x \mid Y = y ) $ is called the conditional distribution function of $ X $ for a fixed value of $ Y $. If $ Y $ has a density $ f _ {Y} ( y) $, then

$$ F _ {X} ( x \mid Y = y ) = \ \frac{1}{f _ {Y} ( y) } \frac \partial {\partial y } F _ {X,Y} ( x , y ) , $$

where $ F _ {X,Y} ( x , y ) $ is the joint distribution function of $ X $ and $ Y $.

References

[1] Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)
[2] M. Loève, "Probability theory" , Princeton Univ. Press (1963)
[3] I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 1 , Springer (1974) (Translated from Russian)

Comments

Another definition of a conditional distribution is as a function $ f ( \omega , B ) $ of a regular event and a Borel set such that, for fixed $ \omega $, $ f ( \omega , \cdot ) $ is a probability measure and, for fixed $ B $, $ f ( \cdot , B ) $ is a measurable function.

References

[a1] L.P. Breiman, "Probability" , Addison-Wesley (1968)
How to Cite This Entry:
Conditional distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conditional_distribution&oldid=11344
This article was adapted from an original article by V.G. Ushakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article