Difference between revisions of "Coefficient problem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0229202.png | ||
+ | $#A+1 = 110 n = 0 | ||
+ | $#C+1 = 110 : ~/encyclopedia/old_files/data/C022/C.0202920 Coefficient problem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | ''for the class $ S $'' | ||
A problem for the class of functions | A problem for the class of functions | ||
− | + | $$ | |
+ | f ( z) = \ | ||
+ | z + \sum _ {n = 2 } ^ \infty | ||
+ | c _ {n} z ^ {n} | ||
+ | $$ | ||
+ | |||
+ | which are regular and univalent in the disc $ | z | < 1 $. | ||
+ | It consists of determining for every $ n $, | ||
+ | $ n \geq 2 $, | ||
+ | the region of values $ V _ {n} $ | ||
+ | for the system of coefficients $ \{ c _ {2} \dots c _ {n} \} $ | ||
+ | of the functions of this class and, in particular, to find sharp bounds for $ | c _ {n} | $, | ||
+ | $ n \geq 2 $, | ||
+ | in the class $ S $( | ||
+ | see [[Bieberbach conjecture|Bieberbach conjecture]]). The coefficient problem for a class $ R $ | ||
+ | of functions regular in $ | z | < 1 $ | ||
+ | consists in determining in $ R $, | ||
+ | for every $ n $, | ||
+ | $ n \geq 1 $, | ||
+ | the region of values of the first $ n $ | ||
+ | coefficients in the series expansions of the functions of $ R $ | ||
+ | in powers of $ z $ | ||
+ | and, in particular, in obtaining sharp bounds for these coefficients in the class $ R $. | ||
+ | The coefficient problem has been solved for the [[Carathéodory class|Carathéodory class]], for the class of univalent star-like functions, and for the class of functions regular and bounded in $ | z | < 1 $. | ||
− | + | It is known that $ V _ {2} $ | |
+ | is a disc: $ | c _ {2} | \leq 2 $. | ||
+ | Profound qualitative results with regard to the coefficient problem have been obtained for the class $ S $( | ||
+ | see [[#References|[7]]]). The set $ V _ {n} $ | ||
+ | is a bounded closed domain; the point $ c _ {2} = 0 \dots c _ {n} = 0 $ | ||
+ | is an interior point of $ V _ {n} $; | ||
+ | $ V _ {n} $ | ||
+ | is homeomorphic to a closed $ ( 2n - 2) $- | ||
+ | dimensional ball; the boundary of $ V _ {n} $ | ||
+ | is a union of finitely many parts $ \Pi _ {1} \dots \Pi _ {N} $; | ||
+ | the coordinates of a point $ ( c _ {2} \dots c _ {n} ) $ | ||
+ | on any one of these parts are functions of a finite number ( $ \leq 2n - 3 $) | ||
+ | of parameters. To every boundary point of $ V _ {n} $ | ||
+ | there corresponds a unique function of the class $ S $. | ||
+ | The boundary of $ V _ {3} $ | ||
+ | is a union of two hyperplanes $ \Pi _ {1} $ | ||
+ | and $ \Pi _ {2} $ | ||
+ | of dimension 3 and their intersections: planes $ \Pi _ {3} $ | ||
+ | and $ \Pi _ {4} $ | ||
+ | and a curve $ \Pi _ {5} $. | ||
+ | Parametric formulas have been derived for $ \Pi _ {1} $ | ||
+ | and $ \Pi _ {2} $ | ||
+ | in terms of elementary functions. The intersection of $ V _ {3} $ | ||
+ | with the plane $ \mathop{\rm Im} c _ {2} = 0 $ | ||
+ | is symmetric about the planes $ \mathop{\rm Re} c _ {2} = 0 $ | ||
+ | and $ \mathop{\rm Im} c _ {3} = 0 $. | ||
+ | The intersection of $ V _ {3} $ | ||
+ | with the plane $ \mathop{\rm Im} c _ {3} = 0 $ | ||
+ | is symmetric about the planes $ \mathop{\rm Im} c _ {2} = 0 $ | ||
+ | and $ \mathop{\rm Re} c _ {2} = 0 $. | ||
+ | A function $ w = f ( z) $ | ||
+ | corresponding to a point on $ \Pi _ {1} $ | ||
+ | maps $ | z | < 1 $ | ||
+ | onto the $ w $- | ||
+ | plane cut by an analytic curve going to infinity. A function $ w = f ( z) $ | ||
+ | corresponding to a point on $ \Pi _ {2} $ | ||
+ | maps $ | z | < 1 $ | ||
+ | onto the $ w $- | ||
+ | plane cut by three analytic arcs, issuing from a finite point and inclined to one another at angles $ 2 \pi /3 $; | ||
+ | one of these arcs lies on a straight line $ \mathop{\rm arg} w = \textrm{ const } $ | ||
+ | and goes to infinity. | ||
− | + | Among the other special regions that have been investigated are the following: the region of values $ \{ c _ {2} , c _ {3} \} $ | |
+ | in the subclass of $ S $ | ||
+ | consisting of functions with real $ c _ {2} $ | ||
+ | and $ c _ {3} $; | ||
+ | the region of values $ \{ | c _ {k + 1 } |, | c _ {2k + 1 } | \} $ | ||
+ | and $ \{ c _ {k + 1 } , c _ {2k + 1 } \} $, | ||
+ | if $ \mathop{\rm Im} c _ {k + 1 } = \mathop{\rm Im} c _ {2k + 1 } = 0 $, | ||
+ | on the subclass of bounded functions in $ S $ | ||
+ | representable as | ||
− | + | $$ | |
+ | f ( z) = z + | ||
+ | \sum _ {n = 1 } ^ \infty | ||
+ | c _ {nk + 1 } | ||
+ | z ^ {nk + 1 } ; | ||
+ | $$ | ||
− | + | the region of values $ \{ c _ {2} , c _ {3} \} $ | |
+ | on the subclass of bounded functions in $ S $; | ||
+ | the region of values $ \{ c _ {2} , c _ {3} , c _ {4} \} $ | ||
+ | on the subclass of functions in $ S $ | ||
+ | with real $ c _ {2} , c _ {3} $ | ||
+ | and $ c _ {4} $. | ||
− | the | + | Sharp bounds for the coefficients, of the type $ | c _ {n} | \leq A _ {n} $, |
+ | $ n \geq 2 $, | ||
+ | have been obtained in the subclass of convex functions in $ S $ | ||
+ | with $ A _ {n} = 1 $( | ||
+ | cf. [[Convex function (of a complex variable)|Convex function (of a complex variable)]]), in the subclass of star-like functions in $ S $ | ||
+ | with $ A _ {n} = n $, | ||
+ | in the subclass of odd star-like functions in $ S $ | ||
+ | with $ A _ {n} = 1 $, | ||
+ | $ n = 3, 5 \dots $ | ||
+ | in the class of univalent functions having real coefficients with $ A _ {n} = n $, | ||
+ | in the subclass of close-to-convex functions in $ S $ | ||
+ | with $ A _ {n} = n $, | ||
+ | and in the class $ S $ | ||
+ | itself with $ A _ {n} = n $( | ||
+ | cf. [[Bieberbach conjecture|Bieberbach conjecture]], [[#References|[8]]]). In the class of functions | ||
− | + | $$ | |
+ | f ( z) = z + | ||
+ | \sum _ {n = 2 } ^ \infty | ||
+ | c _ {n} z ^ {n} | ||
+ | $$ | ||
− | < | + | which are regular and typically real in $ | z | < 1 $ |
+ | one has the sharp bound $ | c _ {n} | \leq n $, | ||
+ | $ n \geq 2 $, | ||
+ | and in the class of [[Bieberbach–Eilenberg functions|Bieberbach–Eilenberg functions]] $ f ( z) = a _ {1} z + a _ {2} z ^ {2} + \dots $ | ||
+ | one has the sharp bound $ | a _ {n} | \leq 1 $, | ||
+ | $ n \geq 1 $. | ||
− | + | Sharp bounds are known for the class $ \Sigma $ | |
+ | of functions | ||
− | + | $$ | |
+ | F ( \zeta ) = \ | ||
+ | \zeta + | ||
+ | \sum _ {n = 0 } ^ \infty | ||
− | + | \frac{b _ {n} }{\zeta ^ {n} } | |
− | + | $$ | |
− | + | which are meromorphic and univalent in $ | \zeta | > 1 $; | |
+ | these are | ||
− | + | $$ | |
+ | | b _ {1} | \leq 1,\ \ | ||
+ | | b _ {2} | \leq { | ||
+ | \frac{2}{3} | ||
+ | } ,\ \ | ||
+ | | b _ {3} | \leq { | ||
+ | \frac{1}{2} | ||
+ | } + e ^ {-} 6 . | ||
+ | $$ | ||
− | + | For the subclass of star-like functions in $ \Sigma $, | |
+ | one has the sharp bound | ||
− | Sharp bounds are also known for other subclasses of | + | $$ |
+ | | b _ {n} | \leq \ | ||
+ | |||
+ | \frac{2}{n + 1 } | ||
+ | ,\ \ | ||
+ | n \geq 1. | ||
+ | $$ | ||
+ | |||
+ | Sharp bounds are also known for other subclasses of $ S $ | ||
+ | and $ \Sigma $( | ||
+ | see [[#References|[1]]]–[[#References|[4]]]), and also for some classes of $ p $- | ||
+ | valent functions and in classes of functions which are $ p $- | ||
+ | valent in the mean (see [[#References|[5]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "Geometric methods in the theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.E. Bazilevich, , ''Mathematics in the USSR during 40 years: 1917–1957'' , '''1''' , Moscow (1959) pp. 444–472 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.K. Hayman, "Coefficient problems for univalent functions and related function classes" ''J. London Math. Soc.'' , '''40''' : 3 (1965) pp. 385–406</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.W. Goodman, "Open problems on univalent and multivalent functions" ''Bull. Amer. Math. Soc.'' , '''74''' : 6 (1968) pp. 1035–1050</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Phelps, "On a coefficient problem in univalent functions" ''Trans. Amer. Math. Soc.'' , '''143''' (1969) pp. 475–485</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.C. Schaeffer, D.C. Spencer, "Coefficient regions for schlicht functions" , ''Amer. Math. Soc. Coll. Publ.'' , '''35''' , Amer. Math. Soc. (1950)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L. de Branges, "A proof of the Bieberbach conjecture" ''Acta Math.'' , '''154''' : 1–2 (1985) pp. 137–152</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "Geometric methods in the theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.E. Bazilevich, , ''Mathematics in the USSR during 40 years: 1917–1957'' , '''1''' , Moscow (1959) pp. 444–472 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.K. Hayman, "Coefficient problems for univalent functions and related function classes" ''J. London Math. Soc.'' , '''40''' : 3 (1965) pp. 385–406</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.W. Goodman, "Open problems on univalent and multivalent functions" ''Bull. Amer. Math. Soc.'' , '''74''' : 6 (1968) pp. 1035–1050</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D. Phelps, "On a coefficient problem in univalent functions" ''Trans. Amer. Math. Soc.'' , '''143''' (1969) pp. 475–485</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.C. Schaeffer, D.C. Spencer, "Coefficient regions for schlicht functions" , ''Amer. Math. Soc. Coll. Publ.'' , '''35''' , Amer. Math. Soc. (1950)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L. de Branges, "A proof of the Bieberbach conjecture" ''Acta Math.'' , '''154''' : 1–2 (1985) pp. 137–152</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For functions in the class | + | For functions in the class $ \Sigma $, |
+ | the estimates for $ | b _ {2} | $ | ||
+ | and $ | b _ {3} | $ | ||
+ | mentioned above are due to M. Schiffer [[#References|[a1]]] and P.R. Garabedian and Schiffer [[#References|[a2]]], respectively. The sharp bound for star-like functions in $ \Sigma $ | ||
+ | is due to J. Clunie [[#References|[a3]]] and C. Pommerenke [[#References|[a4]]]. Standard references in English include [[#References|[a5]]]–[[#References|[a7]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Schiffer, "Sur un problème d'extrémum de la répresentation conforme" ''Bull. Soc. Math. France'' , '''66''' (1938) pp. 48–55</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Garabedian, M. Schiffer, "A coefficient inequality for schlicht functions" ''Ann. of Math.'' , '''61''' (1955) pp. 116–136</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Clunie, "On meromorphic schlicht functions" ''J. London Math. Soc.'' , '''34''' (1959) pp. 215–216</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> C. Pommerenke, "On meromorphic starlike functions" ''Pacific J. Math.'' , '''13''' (1963) pp. 221–235</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W.K. Hayman, "Multivalent functions" , Cambridge Univ. Press (1967)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> C. Pommerenke, "Univalent functions" , Vandenhoeck & Ruprecht (1975)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. 258</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> O. Tammi, "Extremum problems for bounded univalent functions II" , ''Lect. notes in math.'' , '''913''' , Springer (1982)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Schiffer, "Sur un problème d'extrémum de la répresentation conforme" ''Bull. Soc. Math. France'' , '''66''' (1938) pp. 48–55</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.R. Garabedian, M. Schiffer, "A coefficient inequality for schlicht functions" ''Ann. of Math.'' , '''61''' (1955) pp. 116–136</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Clunie, "On meromorphic schlicht functions" ''J. London Math. Soc.'' , '''34''' (1959) pp. 215–216</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> C. Pommerenke, "On meromorphic starlike functions" ''Pacific J. Math.'' , '''13''' (1963) pp. 221–235</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W.K. Hayman, "Multivalent functions" , Cambridge Univ. Press (1967)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> C. Pommerenke, "Univalent functions" , Vandenhoeck & Ruprecht (1975)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. 258</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> O. Tammi, "Extremum problems for bounded univalent functions II" , ''Lect. notes in math.'' , '''913''' , Springer (1982)</TD></TR></table> |
Latest revision as of 17:45, 4 June 2020
for the class $ S $
A problem for the class of functions
$$ f ( z) = \ z + \sum _ {n = 2 } ^ \infty c _ {n} z ^ {n} $$
which are regular and univalent in the disc $ | z | < 1 $. It consists of determining for every $ n $, $ n \geq 2 $, the region of values $ V _ {n} $ for the system of coefficients $ \{ c _ {2} \dots c _ {n} \} $ of the functions of this class and, in particular, to find sharp bounds for $ | c _ {n} | $, $ n \geq 2 $, in the class $ S $( see Bieberbach conjecture). The coefficient problem for a class $ R $ of functions regular in $ | z | < 1 $ consists in determining in $ R $, for every $ n $, $ n \geq 1 $, the region of values of the first $ n $ coefficients in the series expansions of the functions of $ R $ in powers of $ z $ and, in particular, in obtaining sharp bounds for these coefficients in the class $ R $. The coefficient problem has been solved for the Carathéodory class, for the class of univalent star-like functions, and for the class of functions regular and bounded in $ | z | < 1 $.
It is known that $ V _ {2} $ is a disc: $ | c _ {2} | \leq 2 $. Profound qualitative results with regard to the coefficient problem have been obtained for the class $ S $( see [7]). The set $ V _ {n} $ is a bounded closed domain; the point $ c _ {2} = 0 \dots c _ {n} = 0 $ is an interior point of $ V _ {n} $; $ V _ {n} $ is homeomorphic to a closed $ ( 2n - 2) $- dimensional ball; the boundary of $ V _ {n} $ is a union of finitely many parts $ \Pi _ {1} \dots \Pi _ {N} $; the coordinates of a point $ ( c _ {2} \dots c _ {n} ) $ on any one of these parts are functions of a finite number ( $ \leq 2n - 3 $) of parameters. To every boundary point of $ V _ {n} $ there corresponds a unique function of the class $ S $. The boundary of $ V _ {3} $ is a union of two hyperplanes $ \Pi _ {1} $ and $ \Pi _ {2} $ of dimension 3 and their intersections: planes $ \Pi _ {3} $ and $ \Pi _ {4} $ and a curve $ \Pi _ {5} $. Parametric formulas have been derived for $ \Pi _ {1} $ and $ \Pi _ {2} $ in terms of elementary functions. The intersection of $ V _ {3} $ with the plane $ \mathop{\rm Im} c _ {2} = 0 $ is symmetric about the planes $ \mathop{\rm Re} c _ {2} = 0 $ and $ \mathop{\rm Im} c _ {3} = 0 $. The intersection of $ V _ {3} $ with the plane $ \mathop{\rm Im} c _ {3} = 0 $ is symmetric about the planes $ \mathop{\rm Im} c _ {2} = 0 $ and $ \mathop{\rm Re} c _ {2} = 0 $. A function $ w = f ( z) $ corresponding to a point on $ \Pi _ {1} $ maps $ | z | < 1 $ onto the $ w $- plane cut by an analytic curve going to infinity. A function $ w = f ( z) $ corresponding to a point on $ \Pi _ {2} $ maps $ | z | < 1 $ onto the $ w $- plane cut by three analytic arcs, issuing from a finite point and inclined to one another at angles $ 2 \pi /3 $; one of these arcs lies on a straight line $ \mathop{\rm arg} w = \textrm{ const } $ and goes to infinity.
Among the other special regions that have been investigated are the following: the region of values $ \{ c _ {2} , c _ {3} \} $ in the subclass of $ S $ consisting of functions with real $ c _ {2} $ and $ c _ {3} $; the region of values $ \{ | c _ {k + 1 } |, | c _ {2k + 1 } | \} $ and $ \{ c _ {k + 1 } , c _ {2k + 1 } \} $, if $ \mathop{\rm Im} c _ {k + 1 } = \mathop{\rm Im} c _ {2k + 1 } = 0 $, on the subclass of bounded functions in $ S $ representable as
$$ f ( z) = z + \sum _ {n = 1 } ^ \infty c _ {nk + 1 } z ^ {nk + 1 } ; $$
the region of values $ \{ c _ {2} , c _ {3} \} $ on the subclass of bounded functions in $ S $; the region of values $ \{ c _ {2} , c _ {3} , c _ {4} \} $ on the subclass of functions in $ S $ with real $ c _ {2} , c _ {3} $ and $ c _ {4} $.
Sharp bounds for the coefficients, of the type $ | c _ {n} | \leq A _ {n} $, $ n \geq 2 $, have been obtained in the subclass of convex functions in $ S $ with $ A _ {n} = 1 $( cf. Convex function (of a complex variable)), in the subclass of star-like functions in $ S $ with $ A _ {n} = n $, in the subclass of odd star-like functions in $ S $ with $ A _ {n} = 1 $, $ n = 3, 5 \dots $ in the class of univalent functions having real coefficients with $ A _ {n} = n $, in the subclass of close-to-convex functions in $ S $ with $ A _ {n} = n $, and in the class $ S $ itself with $ A _ {n} = n $( cf. Bieberbach conjecture, [8]). In the class of functions
$$ f ( z) = z + \sum _ {n = 2 } ^ \infty c _ {n} z ^ {n} $$
which are regular and typically real in $ | z | < 1 $ one has the sharp bound $ | c _ {n} | \leq n $, $ n \geq 2 $, and in the class of Bieberbach–Eilenberg functions $ f ( z) = a _ {1} z + a _ {2} z ^ {2} + \dots $ one has the sharp bound $ | a _ {n} | \leq 1 $, $ n \geq 1 $.
Sharp bounds are known for the class $ \Sigma $ of functions
$$ F ( \zeta ) = \ \zeta + \sum _ {n = 0 } ^ \infty \frac{b _ {n} }{\zeta ^ {n} } $$
which are meromorphic and univalent in $ | \zeta | > 1 $; these are
$$ | b _ {1} | \leq 1,\ \ | b _ {2} | \leq { \frac{2}{3} } ,\ \ | b _ {3} | \leq { \frac{1}{2} } + e ^ {-} 6 . $$
For the subclass of star-like functions in $ \Sigma $, one has the sharp bound
$$ | b _ {n} | \leq \ \frac{2}{n + 1 } ,\ \ n \geq 1. $$
Sharp bounds are also known for other subclasses of $ S $ and $ \Sigma $( see [1]–[4]), and also for some classes of $ p $- valent functions and in classes of functions which are $ p $- valent in the mean (see [5]).
References
[1] | G.M. Goluzin, "Geometric methods in the theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[2] | I.E. Bazilevich, , Mathematics in the USSR during 40 years: 1917–1957 , 1 , Moscow (1959) pp. 444–472 (In Russian) |
[3] | J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958) |
[4] | W.K. Hayman, "Coefficient problems for univalent functions and related function classes" J. London Math. Soc. , 40 : 3 (1965) pp. 385–406 |
[5] | A.W. Goodman, "Open problems on univalent and multivalent functions" Bull. Amer. Math. Soc. , 74 : 6 (1968) pp. 1035–1050 |
[6] | D. Phelps, "On a coefficient problem in univalent functions" Trans. Amer. Math. Soc. , 143 (1969) pp. 475–485 |
[7] | A.C. Schaeffer, D.C. Spencer, "Coefficient regions for schlicht functions" , Amer. Math. Soc. Coll. Publ. , 35 , Amer. Math. Soc. (1950) |
[8] | L. de Branges, "A proof of the Bieberbach conjecture" Acta Math. , 154 : 1–2 (1985) pp. 137–152 |
Comments
For functions in the class $ \Sigma $, the estimates for $ | b _ {2} | $ and $ | b _ {3} | $ mentioned above are due to M. Schiffer [a1] and P.R. Garabedian and Schiffer [a2], respectively. The sharp bound for star-like functions in $ \Sigma $ is due to J. Clunie [a3] and C. Pommerenke [a4]. Standard references in English include [a5]–[a7].
References
[a1] | M. Schiffer, "Sur un problème d'extrémum de la répresentation conforme" Bull. Soc. Math. France , 66 (1938) pp. 48–55 |
[a2] | P.R. Garabedian, M. Schiffer, "A coefficient inequality for schlicht functions" Ann. of Math. , 61 (1955) pp. 116–136 |
[a3] | J. Clunie, "On meromorphic schlicht functions" J. London Math. Soc. , 34 (1959) pp. 215–216 |
[a4] | C. Pommerenke, "On meromorphic starlike functions" Pacific J. Math. , 13 (1963) pp. 221–235 |
[a5] | W.K. Hayman, "Multivalent functions" , Cambridge Univ. Press (1967) |
[a6] | C. Pommerenke, "Univalent functions" , Vandenhoeck & Ruprecht (1975) |
[a7] | P.L. Duren, "Univalent functions" , Springer (1983) pp. 258 |
[a8] | O. Tammi, "Extremum problems for bounded univalent functions II" , Lect. notes in math. , 913 , Springer (1982) |
Coefficient problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coefficient_problem&oldid=11302