Difference between revisions of "Oscillating solution"
(Importing text file) |
(gather refs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | o0705001.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/O070/O.0700500 Oscillating solution | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A solution $ x ( t) $ | |
+ | of a differential equation | ||
− | + | $$ \tag{* } | |
+ | x ^ {(n)} = \ | ||
+ | f ( t , x , x ^ \prime \dots x ^ {(n- 1)} ),\ \ | ||
+ | t \in [ t _ {0} , \infty ) , | ||
+ | $$ | ||
− | with | + | with the property: There exists for any $ t _ {1} \geq t _ {0} $ |
+ | a point $ t _ {2} > t _ {1} $ | ||
+ | such that $ x ( t) $ | ||
+ | changes sign on passing through it. In many applied problems there arises the question of the existence of an oscillating solution or the question whether all the solutions of equation (*) oscillate. Many sufficient conditions are known under which equation (*) has an oscillating solution (see [[#References|[1]]], [[#References|[2]]], [[#References|[3]]]). For example, any non-trivial solution of the equation $ x ^ {\prime\prime} + 2 \delta x ^ \prime + \omega ^ {2} x = 0 $ | ||
+ | with constant coefficients is oscillating if $ \delta ^ {2} < \omega ^ {2} $; | ||
+ | every non-trivial solution of the equation | ||
− | + | $$ | |
+ | x ^ {\prime\prime} + p ( t) x ^ \prime + q ( t) x = 0 | ||
+ | $$ | ||
− | + | with $ \omega $- | |
+ | periodic coefficients is oscillating if | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty | ||
+ | dt \int\limits _ { t } ^ { {t } + \omega } | ||
+ | q ( s) \mathop{\rm exp} | ||
+ | \left ( - \int\limits _ { s } ^ { t } p ( r) dr \right ) ds \geq | ||
+ | $$ | ||
− | + | $$ | |
+ | \geq \ | ||
+ | - | ||
+ | \frac{1}{2} | ||
+ | \left ( 1 - \mathop{\rm exp} \int\limits _ { 0 } ^ \omega p ( t) dt \right ) \int\limits _ { 0 } ^ \omega p ( t) dt | ||
+ | $$ | ||
− | + | and $ q ( t) \not\equiv 0 $ | |
− | + | on $ [ 0 , \omega ] $. | |
− | |||
− | |||
− | |||
− | |||
+ | In a number of applications there arises the question of the existence of oscillating solutions (in the above sense) of a system of ordinary differential equations. For example, in control theory one studies the oscillation relative to a given hyperplane $ \sum _ {i=1} ^ {n} c _ {i} x _ {i} = 0 $ | ||
+ | of the solutions $ x ( t) = ( x _ {1} ( t) \dots x _ {n} ( t) ) $ | ||
+ | of the system of equations $ x ^ \prime = f ( t , x ) $, | ||
+ | that is, the question whether the function $ \sigma ( t) = \sum _ {i=1} ^ {n} c _ {i} x _ {i} ( t) $ | ||
+ | oscillates. $ [ \alpha , \beta ] $- | ||
+ | oscillating solutions are also studied; a bounded solution $ x ( t) $ | ||
+ | of the system $ x ^ \prime = f ( t , x ) $ | ||
+ | is called $ [ \alpha , \beta ] $- | ||
+ | oscillating if $ \sigma ( t) $ | ||
+ | is oscillating and for any $ t _ {1} \geq t _ {0} $ | ||
+ | there are points $ t _ {2} $ | ||
+ | and $ t _ {3} $ | ||
+ | such that $ t _ {1} < t _ {2} < t _ {3} $, | ||
+ | $ \sigma ( t _ {2} ) < \alpha $, | ||
+ | $ \sigma ( t _ {3} ) > \beta $, | ||
+ | where $ \alpha < 0 < \beta $. | ||
+ | For the system $ x ^ \prime = f ( x , t ) $ | ||
+ | there also exist other definitions of an oscillating solution. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian)</TD></TR> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17</TD></TR></table> |
Latest revision as of 08:04, 12 January 2024
A solution $ x ( t) $
of a differential equation
$$ \tag{* } x ^ {(n)} = \ f ( t , x , x ^ \prime \dots x ^ {(n- 1)} ),\ \ t \in [ t _ {0} , \infty ) , $$
with the property: There exists for any $ t _ {1} \geq t _ {0} $ a point $ t _ {2} > t _ {1} $ such that $ x ( t) $ changes sign on passing through it. In many applied problems there arises the question of the existence of an oscillating solution or the question whether all the solutions of equation (*) oscillate. Many sufficient conditions are known under which equation (*) has an oscillating solution (see [1], [2], [3]). For example, any non-trivial solution of the equation $ x ^ {\prime\prime} + 2 \delta x ^ \prime + \omega ^ {2} x = 0 $ with constant coefficients is oscillating if $ \delta ^ {2} < \omega ^ {2} $; every non-trivial solution of the equation
$$ x ^ {\prime\prime} + p ( t) x ^ \prime + q ( t) x = 0 $$
with $ \omega $- periodic coefficients is oscillating if
$$ \int\limits _ { 0 } ^ \infty dt \int\limits _ { t } ^ { {t } + \omega } q ( s) \mathop{\rm exp} \left ( - \int\limits _ { s } ^ { t } p ( r) dr \right ) ds \geq $$
$$ \geq \ - \frac{1}{2} \left ( 1 - \mathop{\rm exp} \int\limits _ { 0 } ^ \omega p ( t) dt \right ) \int\limits _ { 0 } ^ \omega p ( t) dt $$
and $ q ( t) \not\equiv 0 $ on $ [ 0 , \omega ] $.
In a number of applications there arises the question of the existence of oscillating solutions (in the above sense) of a system of ordinary differential equations. For example, in control theory one studies the oscillation relative to a given hyperplane $ \sum _ {i=1} ^ {n} c _ {i} x _ {i} = 0 $ of the solutions $ x ( t) = ( x _ {1} ( t) \dots x _ {n} ( t) ) $ of the system of equations $ x ^ \prime = f ( t , x ) $, that is, the question whether the function $ \sigma ( t) = \sum _ {i=1} ^ {n} c _ {i} x _ {i} ( t) $ oscillates. $ [ \alpha , \beta ] $- oscillating solutions are also studied; a bounded solution $ x ( t) $ of the system $ x ^ \prime = f ( t , x ) $ is called $ [ \alpha , \beta ] $- oscillating if $ \sigma ( t) $ is oscillating and for any $ t _ {1} \geq t _ {0} $ there are points $ t _ {2} $ and $ t _ {3} $ such that $ t _ {1} < t _ {2} < t _ {3} $, $ \sigma ( t _ {2} ) < \alpha $, $ \sigma ( t _ {3} ) > \beta $, where $ \alpha < 0 < \beta $. For the system $ x ^ \prime = f ( x , t ) $ there also exist other definitions of an oscillating solution.
References
[1] | P. Hartman, "Ordinary differential equations" , Birkhäuser (1982) |
[2] | C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968) |
[3] | I.T. Kiguradze, "Some singular boundary value problems for ordinary differential equations" , Tbilisi (1975) (In Russian) |
[a1] | E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17 |
Oscillating solution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Oscillating_solution&oldid=11276