Difference between revisions of "Hypergeometric series"
(Importing text file) |
(→References: zbl link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0484601.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/H048/H.0408460 Hypergeometric series, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Gauss series'' | ''Gauss series'' | ||
A series of the form | A series of the form | ||
− | + | $$ | |
+ | F ( \alpha , \beta ; \gamma ; z) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | 1 + \sum _ {n = 1 } ^ \infty | ||
+ | \frac{\alpha \dots ( \alpha + n - 1) \beta \dots | ||
+ | ( \beta + n - 1) }{n! \gamma \dots ( \gamma + n - 1) } | ||
+ | z ^ {n} . | ||
+ | $$ | ||
− | Such a series is meaningful if | + | Such a series is meaningful if $ \gamma $ |
+ | is not equal to zero or to a negative integer; it converges for $ | z | < 1 $. | ||
+ | If, in addition, $ \mathop{\rm Re} ( \gamma - \alpha - \beta ) > 0 $, | ||
+ | it also converges for $ z = 1 $. | ||
+ | In such a case the Gauss formula | ||
− | + | $$ | |
+ | F ( \alpha , \beta ; \gamma ; 1) = \ | ||
− | where | + | \frac{\Gamma ( \gamma ) \Gamma ( \gamma - \alpha - \beta ) }{\Gamma ( \gamma - \alpha ) \Gamma ( \gamma - \beta ) } |
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ \Gamma ( z) $ | ||
+ | is the gamma-function, holds. An analytic function defined with the aid of a hypergeometric series is said to be a [[Hypergeometric function|hypergeometric function]]. | ||
A generalized hypergeometric series is a series of the form | A generalized hypergeometric series is a series of the form | ||
− | + | $$ | |
− | + | {} _ {p} F _ {q} ( \alpha _ {1} \dots \alpha _ {p} ; \ | |
− | + | \gamma _ {1} \dots \gamma _ {q} ; z) = | |
− | + | $$ | |
− | |||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ {n = 0 } ^ \infty { | ||
+ | \frac{1}{n!} | ||
+ | } | ||
+ | \frac{( \alpha _ {1} ) _ {n} \dots ( \alpha _ {p} ) _ {n} }{( \gamma _ {1} ) _ {n} \dots ( \gamma _ {q} ) _ {n} } | ||
+ | z ^ {n} , | ||
+ | $$ | ||
+ | where $ ( x) _ {n} \equiv x( x + 1) \dots ( x + n - 1) $. | ||
+ | If this notation is used, the series | ||
+ | is written as $ {} _ {2} F _ {1} ( \alpha , \beta ; \gamma ; z) $. | ||
====Comments==== | ====Comments==== | ||
− | Generalized hypergeometric series can be characterized as power series | + | Generalized hypergeometric series can be characterized as power series $ \sum _ {n = 0 } ^ \infty A _ {n} z ^ {n} $ |
+ | such that $ A _ {n + 1 } /A _ {n} $ | ||
+ | is a rational function of $ n $. | ||
+ | An analogous characterization for series in two variables was given by J. Horn. This yields a class of power series in two variables which includes the various Appell's hypergeometric series, cf. [[#References|[a1]]]. | ||
− | Basic hypergeometric series can be characterized as power series | + | Basic hypergeometric series can be characterized as power series $ \sum _ {n = 0 } ^ \infty A _ {n} z ^ {n} $ |
+ | such that $ A _ {n + 1 } /A _ {n} $ | ||
+ | is a rational function of $ q ^ {n} $, | ||
+ | where $ q $ | ||
+ | is a fixed complex number not equal to 0 or 1. Such series have the form | ||
− | + | $$ | |
+ | {} _ {r} \phi _ {s} ( a _ {1} \dots a _ {r} ; \ | ||
+ | b _ {1} \dots b _ {s} ; \ | ||
+ | q, z) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ {n = 0 } ^ \infty | ||
+ | \frac{[ ( - 1 ) ^ {n} q ^ {n ( n - | ||
+ | 1)/2 } ] ^ {s - r + 1 } }{( q; q ) _ {n} } | ||
+ | |||
+ | \frac{( | ||
+ | a _ {1} ; q ) _ {n} \dots ( a _ {r} ; q ) _ {n} }{ | ||
+ | ( b _ {1} ; q ) _ {n} \dots ( b _ {s} ; q ) _ {n} } | ||
+ | z ^ {n} , | ||
+ | $$ | ||
− | where | + | where $ ( x; q) _ {n} \equiv ( 1 - x) ( 1 - qx) \dots ( 1 - q ^ {n - 1 } x) $. |
+ | See [[#References|[a2]]]. | ||
Hypergeometric functions of matrix argument have also been studied, cf. [[#References|[a3]]]. | Hypergeometric functions of matrix argument have also been studied, cf. [[#References|[a3]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Appell, M.J. Kampé de Fériet, "Fonctions hypergéométriques et hypersphériques: Polynômes d'Hermite" , Gauthier-Villars (1926) {{ZBL|52.0361.13}}</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Gasper, M. Rahman, "Basic hypergeometric series" , Cambridge Univ. Press (1989)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Gross, D. Richards, "Special functions of matrix argument I" ''Trans. Amer. Math. Soc.'' , '''301''' (1987) pp. 781–811</TD></TR> | ||
+ | </table> |
Latest revision as of 14:33, 10 March 2024
Gauss series
A series of the form
$$ F ( \alpha , \beta ; \gamma ; z) = $$
$$ = \ 1 + \sum _ {n = 1 } ^ \infty \frac{\alpha \dots ( \alpha + n - 1) \beta \dots ( \beta + n - 1) }{n! \gamma \dots ( \gamma + n - 1) } z ^ {n} . $$
Such a series is meaningful if $ \gamma $ is not equal to zero or to a negative integer; it converges for $ | z | < 1 $. If, in addition, $ \mathop{\rm Re} ( \gamma - \alpha - \beta ) > 0 $, it also converges for $ z = 1 $. In such a case the Gauss formula
$$ F ( \alpha , \beta ; \gamma ; 1) = \ \frac{\Gamma ( \gamma ) \Gamma ( \gamma - \alpha - \beta ) }{\Gamma ( \gamma - \alpha ) \Gamma ( \gamma - \beta ) } , $$
where $ \Gamma ( z) $ is the gamma-function, holds. An analytic function defined with the aid of a hypergeometric series is said to be a hypergeometric function.
A generalized hypergeometric series is a series of the form
$$ {} _ {p} F _ {q} ( \alpha _ {1} \dots \alpha _ {p} ; \ \gamma _ {1} \dots \gamma _ {q} ; z) = $$
$$ = \ \sum _ {n = 0 } ^ \infty { \frac{1}{n!} } \frac{( \alpha _ {1} ) _ {n} \dots ( \alpha _ {p} ) _ {n} }{( \gamma _ {1} ) _ {n} \dots ( \gamma _ {q} ) _ {n} } z ^ {n} , $$
where $ ( x) _ {n} \equiv x( x + 1) \dots ( x + n - 1) $. If this notation is used, the series
is written as $ {} _ {2} F _ {1} ( \alpha , \beta ; \gamma ; z) $.
Comments
Generalized hypergeometric series can be characterized as power series $ \sum _ {n = 0 } ^ \infty A _ {n} z ^ {n} $ such that $ A _ {n + 1 } /A _ {n} $ is a rational function of $ n $. An analogous characterization for series in two variables was given by J. Horn. This yields a class of power series in two variables which includes the various Appell's hypergeometric series, cf. [a1].
Basic hypergeometric series can be characterized as power series $ \sum _ {n = 0 } ^ \infty A _ {n} z ^ {n} $ such that $ A _ {n + 1 } /A _ {n} $ is a rational function of $ q ^ {n} $, where $ q $ is a fixed complex number not equal to 0 or 1. Such series have the form
$$ {} _ {r} \phi _ {s} ( a _ {1} \dots a _ {r} ; \ b _ {1} \dots b _ {s} ; \ q, z) = $$
$$ = \ \sum _ {n = 0 } ^ \infty \frac{[ ( - 1 ) ^ {n} q ^ {n ( n - 1)/2 } ] ^ {s - r + 1 } }{( q; q ) _ {n} } \frac{( a _ {1} ; q ) _ {n} \dots ( a _ {r} ; q ) _ {n} }{ ( b _ {1} ; q ) _ {n} \dots ( b _ {s} ; q ) _ {n} } z ^ {n} , $$
where $ ( x; q) _ {n} \equiv ( 1 - x) ( 1 - qx) \dots ( 1 - q ^ {n - 1 } x) $. See [a2].
Hypergeometric functions of matrix argument have also been studied, cf. [a3].
References
[a1] | P. Appell, M.J. Kampé de Fériet, "Fonctions hypergéométriques et hypersphériques: Polynômes d'Hermite" , Gauthier-Villars (1926) Zbl 52.0361.13 |
[a2] | G. Gasper, M. Rahman, "Basic hypergeometric series" , Cambridge Univ. Press (1989) |
[a3] | K. Gross, D. Richards, "Special functions of matrix argument I" Trans. Amer. Math. Soc. , 301 (1987) pp. 781–811 |
Hypergeometric series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hypergeometric_series&oldid=11231