Namespaces
Variants
Actions

Difference between revisions of "Fermat's little theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(ce)
m (gather refs)
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
  
 
where $\phi(m)$ is the [[Euler function|Euler function]]. Another generalization of Fermat's little theorem is the equation $x^q=x$, which is valid for all elements of the finite field $k_q$ consisting of $q$ elements.
 
where $\phi(m)$ is the [[Euler function|Euler function]]. Another generalization of Fermat's little theorem is the equation $x^q=x$, which is valid for all elements of the finite field $k_q$ consisting of $q$ elements.
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian)</TD></TR></table>
 
 
 
  
 
====Comments====
 
====Comments====
 
+
The converse of Fermat's little theorem does not hold: for any fixed $a$ there are infinitely many composite $n$ such that $a^{n-1} \equiv 1 \pmod n$.  Such $n$ are known as [[pseudo-prime|pseudoprime]]s.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.H. Hardy,  E.M. Wright,  "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Vinogradov,  "Elements of number theory" , Dover, reprint  (1954)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.H. Hardy,  E.M. Wright,  "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)</TD></TR>
 
+
<TR><TD valign="top">[b1]</TD> <TD valign="top">  C. Pomerance,  J.L. Selfridge,  S.S. Wagstaff, Jr.,  "The pseudoprimes to $25\cdot10^9$"  ''Math. Comp.'' , '''35'''  (1980)  pp. 1003–1026.  {{ZBL|0444.10007}}.  {{DOI|10.2307/2006210}}</TD></TR>
 +
</table>
 
[[Category:Number theory]]
 
[[Category:Number theory]]

Latest revision as of 07:56, 17 July 2025

For a number $a$ not divisible by a prime number $p$, the congruence $a^{p-1}\equiv1\pmod p$ holds. This theorem was established by P. Fermat (1640). It asserts that the order of every element of the multiplicative group of residue classes modulo $p$ divides the order of the group. Fermat's little theorem was generalized by L. Euler to the case modulo an arbitrary $m$. Namely, he proved that for every number $a$ relatively prime to the given number $m>1$ there is the congruence

$$a^{\phi(m)}\equiv1\pmod m,$$

where $\phi(m)$ is the Euler function. Another generalization of Fermat's little theorem is the equation $x^q=x$, which is valid for all elements of the finite field $k_q$ consisting of $q$ elements.

Comments

The converse of Fermat's little theorem does not hold: for any fixed $a$ there are infinitely many composite $n$ such that $a^{n-1} \equiv 1 \pmod n$. Such $n$ are known as pseudoprimes.

References

[1] I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)
[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979)
[b1] C. Pomerance, J.L. Selfridge, S.S. Wagstaff, Jr., "The pseudoprimes to $25\cdot10^9$" Math. Comp. , 35 (1980) pp. 1003–1026. Zbl 0444.10007. DOI 10.2307/2006210
How to Cite This Entry:
Fermat's little theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fermat%27s_little_theorem&oldid=34346
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article