Difference between revisions of "Cellular mapping"
(Importing text file) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0211401.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/C021/C.0201140 Cellular mapping | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A mapping $ f: ( X, A) \rightarrow ( Y, B) $ | |
+ | from one relative [[CW-complex|CW-complex]] $ ( X, A) $ | ||
+ | into another $ ( Y, B) $ | ||
+ | such that $ f (( X, A) ^ { p } ) \subset ( Y, B) ^ { p } $, | ||
+ | where $ ( X, A) ^ { p } $ | ||
+ | and $ ( Y, B) ^ { p } $ | ||
+ | are the $ p $- | ||
+ | skeletons of $ X $ | ||
+ | and $ Y $ | ||
+ | relative to $ A $ | ||
+ | and $ B $, | ||
+ | respectively. In the case when $ A, B = \emptyset $, | ||
+ | one obtains a cellular mapping $ f $ | ||
+ | from the CW-complex $ X $ | ||
+ | into the CW-complex $ Y $. | ||
+ | A homotopy $ F: ( X, A) \rightarrow I \times ( Y, B) $, | ||
+ | where $ I = [ 0, 1] $, | ||
+ | is called cellular if $ F (( X, A) \times I) ^ { p } \subset ( Y, B) ^ { p } $ | ||
+ | for all $ p $. | ||
+ | The following cellular approximation theorem is the analogue of the simplicial approximation theorem (see [[Simplicial mapping|Simplicial mapping]]): Let $ f: ( X, A) \rightarrow ( Y, B) $ | ||
+ | be a mapping from one relative CW-complex $ ( X, A) $ | ||
+ | into another $ ( Y, B) $ | ||
+ | the restriction of which to some subcomplex $ ( L, N) \subset ( X, A) $ | ||
+ | is cellular. Then there exists a cellular mapping $ g: ( X, A) \rightarrow ( Y, B) $ | ||
+ | that is homotopic to $ f $ | ||
+ | relative to $ L $. | ||
− | + | For references see also [[CW-complex]]. | |
− | |||
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Brown, "Elements of modern topology" , McGraw-Hill (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1970) pp. Section 7.5</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Brown, "Elements of modern topology" , McGraw-Hill (1968)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1970) pp. Section 7.5</TD></TR> | ||
+ | </table> |
Latest revision as of 18:02, 29 July 2024
A mapping $ f: ( X, A) \rightarrow ( Y, B) $
from one relative CW-complex $ ( X, A) $
into another $ ( Y, B) $
such that $ f (( X, A) ^ { p } ) \subset ( Y, B) ^ { p } $,
where $ ( X, A) ^ { p } $
and $ ( Y, B) ^ { p } $
are the $ p $-
skeletons of $ X $
and $ Y $
relative to $ A $
and $ B $,
respectively. In the case when $ A, B = \emptyset $,
one obtains a cellular mapping $ f $
from the CW-complex $ X $
into the CW-complex $ Y $.
A homotopy $ F: ( X, A) \rightarrow I \times ( Y, B) $, where $ I = [ 0, 1] $, is called cellular if $ F (( X, A) \times I) ^ { p } \subset ( Y, B) ^ { p } $ for all $ p $. The following cellular approximation theorem is the analogue of the simplicial approximation theorem (see Simplicial mapping): Let $ f: ( X, A) \rightarrow ( Y, B) $ be a mapping from one relative CW-complex $ ( X, A) $ into another $ ( Y, B) $ the restriction of which to some subcomplex $ ( L, N) \subset ( X, A) $ is cellular. Then there exists a cellular mapping $ g: ( X, A) \rightarrow ( Y, B) $ that is homotopic to $ f $ relative to $ L $.
For references see also CW-complex.
References
[a1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[a2] | R. Brown, "Elements of modern topology" , McGraw-Hill (1968) |
[a3] | C.R.F. Maunder, "Algebraic topology" , v. Nostrand (1970) pp. Section 7.5 |
Cellular mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cellular_mapping&oldid=12612