|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964301.png" />''
| + | <!-- |
| + | v0964301.png |
| + | $#A+1 = 72 n = 0 |
| + | $#C+1 = 72 : ~/encyclopedia/old_files/data/V096/V.0906430 Vector field on a manifold |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A section of the [[Tangent bundle|tangent bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964302.png" />. The set of differentiable vector fields forms a module over the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964303.png" /> of differentiable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964304.png" />. | + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | '' $ M $'' |
| + | |
| + | A section of the [[Tangent bundle|tangent bundle]] $ \tau ( M) $. |
| + | The set of differentiable vector fields forms a module over the ring $ F $ |
| + | of differentiable functions on $ M $. |
| | | |
| ===Example 1.=== | | ===Example 1.=== |
− | For a chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964305.png" /> of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964306.png" /> one defines the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964307.png" />-th basic vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964308.png" /> according to the formula | + | For a chart $ x _ {U} $ |
| + | of the manifold $ M $ |
| + | one defines the $ i $- |
| + | th basic vector field $ \partial / \partial x ^ {i} $ |
| + | according to the formula |
| + | |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v0964309.png" /></td> </tr></table>
| + | \frac \partial {\partial x ^ {i} } |
| + | ( p) = \ |
| + | \left . |
| + | \frac \partial {\partial x ^ {i} } |
| + | \right | _ {p} ,\ \ |
| + | p \in U , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643010.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643011.png" />-th basic tangent vector to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643012.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643013.png" />. Any vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643014.png" /> can be uniquely represented in the form | + | where $ \partial / \partial x _ {i} \mid _ {p} $ |
| + | is the $ i $- |
| + | th basic tangent vector to $ M $ |
| + | at the point $ p $. |
| + | Any vector field $ X $ |
| + | can be uniquely represented in the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643015.png" /></td> </tr></table>
| + | $$ |
| + | X = \sum _ { i } \xi ^ {i} ( p) |
| + | \frac \partial {\partial x ^ {i} } |
| + | ( p), |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643016.png" /> are the components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643017.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643018.png" />. Since a vector field can be regarded as a derivation of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643019.png" /> (see example 2), the set of vector fields forms a Lie algebra with respect to the commutation operation (the Lie bracket). | + | where $ \xi ^ {i} ( p) $ |
| + | are the components of $ X $ |
| + | in $ x _ {U} $. |
| + | Since a vector field can be regarded as a derivation of the ring $ F $( |
| + | see example 2), the set of vector fields forms a Lie algebra with respect to the commutation operation (the Lie bracket). |
| | | |
| ===Example 2.=== | | ===Example 2.=== |
− | For the chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643021.png" />, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643022.png" /> is defined by the formula | + | For the chart $ x _ {U} $ |
| + | and $ f \in F $, |
| + | the function $ Xf $ |
| + | is defined by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643023.png" /></td> </tr></table>
| + | $$ |
| + | ( Xf) ( p) = \sum _ { i } \xi ^ {i} ( p) |
| + | \left . D _ {i} ( f( x _ {U} ^ {-1})) \right | _ {x _ {U} ( p) } = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643024.png" /></td> </tr></table>
| + | $$ |
| + | = \ |
| + | \sum _ { i } \left . \xi ^ {i} ( p) |
| + | \frac \partial {\partial x ^ {i} } |
| + | \right | _ {p} ( f ), |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643025.png" /> is the partial derivative with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643026.png" />. Note that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643027.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643028.png" /> is called the derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643029.png" /> in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643030.png" />. | + | where $ D _ {i} $ |
| + | is the partial derivative with respect to $ x ^ {i} $. |
| + | Note that $ \xi ^ {i} ( p)= ( X x ^ {i} ) ( p) $; |
| + | $ Xf $ |
| + | is called the derivative of $ f $ |
| + | in the direction $ X $. |
| | | |
| ===Example 3.=== | | ===Example 3.=== |
− | For the chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643032.png" />, the commutator (Lie bracket) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643033.png" /> of the vector fields | + | For the chart $ x _ {U} $ |
| + | and $ f \in F $, |
| + | the commutator (Lie bracket) $ [ X, Y] $ |
| + | of the vector fields |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643034.png" /></td> </tr></table>
| + | $$ |
| + | X = \sum _ { i } \xi ^ {i} |
| + | \frac \partial {\partial x ^ {i} } |
| + | \ \textrm{ and } \ \ |
| + | Y = \sum _ { i } \eta ^ {i} |
| + | \frac \partial {\partial x ^ {i} } |
| + | |
| + | $$ |
| | | |
| is defined by the formula | | is defined by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643035.png" /></td> </tr></table>
| + | $$ |
| + | ([ X, Y ] f )( p) = ( X( Yf )) ( p) - ( Y( Xf ))( p) = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643036.png" /></td> </tr></table>
| + | $$ |
| + | = \ |
| + | \sum _ { i,k } \left . \left ( \xi ^ {k} |
| + | \frac{\partial \eta ^ {i} }{\partial |
| + | x ^ {k} } |
| + | - \eta ^ {k} |
| + | \frac{\partial \xi ^ {i} }{\partial x ^ {k} } |
| + | \right ) |
| + | \partial |
| + | \frac{f}{\partial x ^ {i} } |
| + | \right | _ {p} . |
| + | $$ |
| | | |
| It satisfies the relations | | It satisfies the relations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643037.png" /></td> </tr></table>
| + | $$ |
| + | [ X, Y] = - [ Y, X], |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643038.png" /></td> </tr></table>
| + | $$ |
| + | [[ X, Y] , Z] + [[ Y, Z], X] + [[ Z, X], Y] = 0; |
| + | $$ |
| | | |
| in particular, | | in particular, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643039.png" /></td> </tr></table>
| + | $$ |
| + | \left [ |
| + | \frac \partial {\partial x ^ {i} } |
| + | , |
| + | |
| + | \frac \partial {\partial x ^ {j} } |
| + | \right ] = 0. |
| + | $$ |
| | | |
− | Each vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643040.png" /> induces a local flow on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643041.png" /> — a family of diffeomorphisms of a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643042.png" />, | + | Each vector field $ X $ |
| + | induces a local flow on $ M $— |
| + | a family of diffeomorphisms of a neighbourhood $ U $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643043.png" /></td> </tr></table>
| + | $$ |
| + | \Phi : (- \epsilon , + \epsilon ) \times U \rightarrow M, |
| + | $$ |
| | | |
− | such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643044.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643045.png" /> and | + | such that $ \Phi ( 0, p)= p $ |
| + | for $ p \in U $ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643046.png" /></td> </tr></table>
| + | $$ |
| + | \Phi ( t, p) = \Phi _ {p} ( t): (- \epsilon , \epsilon ) \rightarrow M |
| + | $$ |
| | | |
− | is the integral curve of the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643047.png" /> through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643048.png" />, i.e. | + | is the integral curve of the vector field $ X $ |
| + | through $ p $, |
| + | i.e. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643049.png" /></td> </tr></table>
| + | $$ |
| + | \Phi ^ \star \left ( |
| + | \frac \partial {\partial t } |
| + | \right ) ( t) = \ |
| + | X ( \Phi ( t, p) ), |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643050.png" /> is the tangent vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643051.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643052.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643053.png" />. Conversely, a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643054.png" /> is associated with a local flow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643055.png" />, which is a variation of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643056.png" />; here | + | where $ \Phi ^ {*} ( \partial / \partial t ) ( t) $ |
| + | is the tangent vector $ d \Phi _ {p} ( t) $ |
| + | to $ M $ |
| + | at $ \Phi _ {p} ( t) $. |
| + | Conversely, a vector field $ X $ |
| + | is associated with a local flow $ \Phi ( t, p)= \Phi _ {t} ( p) $, |
| + | which is a variation of the mapping $ \Phi _ {0} ( p) $; |
| + | here |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643057.png" /></td> </tr></table>
| + | $$ |
| + | ( Xf)( p) = \lim\limits _ {t \rightarrow 0 } |
| + | \frac{f( \Phi _ {t} ( p) )- f( p) }{t} |
| + | . |
| + | $$ |
| | | |
− | Each vector field defines a Lie derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643058.png" /> of a tensor field of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643060.png" /> with values in a vector space (infinitesimal transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643061.png" />), corresponding to the local flow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643062.png" />; its special cases include the action of the vector field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643063.png" />, | + | Each vector field defines a Lie derivation $ L _ {X} $ |
| + | of a tensor field of type $ \lambda $ |
| + | with values in a vector space (infinitesimal transformation of $ \lambda $), |
| + | corresponding to the local flow $ \Phi ( t, p) $; |
| + | its special cases include the action of the vector field on $ f \in F $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643064.png" /></td> </tr></table>
| + | $$ |
| + | L _ {X} f = X f, |
| + | $$ |
| | | |
| and the Lie bracket | | and the Lie bracket |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643065.png" /></td> </tr></table>
| + | $$ |
− | | + | L _ {X} Y = [ X, Y] = \lim\limits _ {t \rightarrow 0 } |
− | A vector field without singularities generates an integrable one-dimensional differential system as well as a [[Pfaffian system|Pfaffian system]] associated with it on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643066.png" />.
| + | |
− | | + | \frac{Y- \Phi _ {t} ^ \star Y \Phi _ {-t} }{t} |
− | A generalization of the concept of a vector field on a manifold is that of a vector field along a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643067.png" />, which is a section of the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643068.png" /> induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643069.png" />, as well as a tensor field of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643070.png" />, which is a section of the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643071.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643072.png" /> with the aid of the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096430/v09643073.png" />.
| + | . |
− | | + | $$ |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> K. Nomizu, "Lie groups and differential geometry" , Math. Soc. Japan (1956)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.M. Postnikov, "Introduction to Morse theory" , Moscow (1971) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962)</TD></TR></table>
| |
− | | |
− | | |
| | | |
− | ====Comments====
| + | A vector field without singularities generates an integrable one-dimensional differential system as well as a [[Pfaffian system]] associated with it on $ M $. |
| | | |
| + | A generalization of the concept of a vector field on a manifold is that of a vector field along a mapping $ \phi : N \rightarrow M $, |
| + | which is a section of the bundle $ \tau _ \phi ( N) $ |
| + | induced by $ \phi $, |
| + | as well as a tensor field of type $ \lambda $, |
| + | which is a section of the bundle $ \lambda [ \tau ] $ |
| + | associated with $ \tau ( M) $ |
| + | with the aid of the functor $ \lambda $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969) {{MR|0242081}} {{ZBL|0653.53001}} {{ZBL|0284.53018}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) {{MR|0229177}} {{ZBL|0155.30701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III {{MR|1931083}} {{MR|1532744}} {{MR|0155257}} {{ZBL|1008.57001}} {{ZBL|0103.15101}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> K. Nomizu, "Lie groups and differential geometry" , Math. Soc. Japan (1956) {{MR|0084166}} {{ZBL|0071.15402}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.M. Postnikov, "Introduction to Morse theory" , Moscow (1971) (In Russian) {{MR|0315739}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) {{MR|0145455}} {{ZBL|0111.18101}} </TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) {{MR|0666697}} {{ZBL|0495.53036}} </TD></TR> |
| + | </table> |
$ M $
A section of the tangent bundle $ \tau ( M) $.
The set of differentiable vector fields forms a module over the ring $ F $
of differentiable functions on $ M $.
Example 1.
For a chart $ x _ {U} $
of the manifold $ M $
one defines the $ i $-
th basic vector field $ \partial / \partial x ^ {i} $
according to the formula
$$
\frac \partial {\partial x ^ {i} }
( p) = \
\left .
\frac \partial {\partial x ^ {i} }
\right | _ {p} ,\ \
p \in U ,
$$
where $ \partial / \partial x _ {i} \mid _ {p} $
is the $ i $-
th basic tangent vector to $ M $
at the point $ p $.
Any vector field $ X $
can be uniquely represented in the form
$$
X = \sum _ { i } \xi ^ {i} ( p)
\frac \partial {\partial x ^ {i} }
( p),
$$
where $ \xi ^ {i} ( p) $
are the components of $ X $
in $ x _ {U} $.
Since a vector field can be regarded as a derivation of the ring $ F $(
see example 2), the set of vector fields forms a Lie algebra with respect to the commutation operation (the Lie bracket).
Example 2.
For the chart $ x _ {U} $
and $ f \in F $,
the function $ Xf $
is defined by the formula
$$
( Xf) ( p) = \sum _ { i } \xi ^ {i} ( p)
\left . D _ {i} ( f( x _ {U} ^ {-1})) \right | _ {x _ {U} ( p) } =
$$
$$
= \
\sum _ { i } \left . \xi ^ {i} ( p)
\frac \partial {\partial x ^ {i} }
\right | _ {p} ( f ),
$$
where $ D _ {i} $
is the partial derivative with respect to $ x ^ {i} $.
Note that $ \xi ^ {i} ( p)= ( X x ^ {i} ) ( p) $;
$ Xf $
is called the derivative of $ f $
in the direction $ X $.
Example 3.
For the chart $ x _ {U} $
and $ f \in F $,
the commutator (Lie bracket) $ [ X, Y] $
of the vector fields
$$
X = \sum _ { i } \xi ^ {i}
\frac \partial {\partial x ^ {i} }
\ \textrm{ and } \ \
Y = \sum _ { i } \eta ^ {i}
\frac \partial {\partial x ^ {i} }
$$
is defined by the formula
$$
([ X, Y ] f )( p) = ( X( Yf )) ( p) - ( Y( Xf ))( p) =
$$
$$
= \
\sum _ { i,k } \left . \left ( \xi ^ {k}
\frac{\partial \eta ^ {i} }{\partial
x ^ {k} }
- \eta ^ {k}
\frac{\partial \xi ^ {i} }{\partial x ^ {k} }
\right )
\partial
\frac{f}{\partial x ^ {i} }
\right | _ {p} .
$$
It satisfies the relations
$$
[ X, Y] = - [ Y, X],
$$
$$
[[ X, Y] , Z] + [[ Y, Z], X] + [[ Z, X], Y] = 0;
$$
in particular,
$$
\left [
\frac \partial {\partial x ^ {i} }
,
\frac \partial {\partial x ^ {j} }
\right ] = 0.
$$
Each vector field $ X $
induces a local flow on $ M $—
a family of diffeomorphisms of a neighbourhood $ U $,
$$
\Phi : (- \epsilon , + \epsilon ) \times U \rightarrow M,
$$
such that $ \Phi ( 0, p)= p $
for $ p \in U $
and
$$
\Phi ( t, p) = \Phi _ {p} ( t): (- \epsilon , \epsilon ) \rightarrow M
$$
is the integral curve of the vector field $ X $
through $ p $,
i.e.
$$
\Phi ^ \star \left (
\frac \partial {\partial t }
\right ) ( t) = \
X ( \Phi ( t, p) ),
$$
where $ \Phi ^ {*} ( \partial / \partial t ) ( t) $
is the tangent vector $ d \Phi _ {p} ( t) $
to $ M $
at $ \Phi _ {p} ( t) $.
Conversely, a vector field $ X $
is associated with a local flow $ \Phi ( t, p)= \Phi _ {t} ( p) $,
which is a variation of the mapping $ \Phi _ {0} ( p) $;
here
$$
( Xf)( p) = \lim\limits _ {t \rightarrow 0 }
\frac{f( \Phi _ {t} ( p) )- f( p) }{t}
.
$$
Each vector field defines a Lie derivation $ L _ {X} $
of a tensor field of type $ \lambda $
with values in a vector space (infinitesimal transformation of $ \lambda $),
corresponding to the local flow $ \Phi ( t, p) $;
its special cases include the action of the vector field on $ f \in F $,
$$
L _ {X} f = X f,
$$
and the Lie bracket
$$
L _ {X} Y = [ X, Y] = \lim\limits _ {t \rightarrow 0 }
\frac{Y- \Phi _ {t} ^ \star Y \Phi _ {-t} }{t}
.
$$
A vector field without singularities generates an integrable one-dimensional differential system as well as a Pfaffian system associated with it on $ M $.
A generalization of the concept of a vector field on a manifold is that of a vector field along a mapping $ \phi : N \rightarrow M $,
which is a section of the bundle $ \tau _ \phi ( N) $
induced by $ \phi $,
as well as a tensor field of type $ \lambda $,
which is a section of the bundle $ \lambda [ \tau ] $
associated with $ \tau ( M) $
with the aid of the functor $ \lambda $.
References
[1] | C. Godbillon, "Géométrie différentielle et mécanique analytique" , Hermann (1969) MR0242081 Zbl 0653.53001 Zbl 0284.53018 |
[2] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) MR0229177 Zbl 0155.30701 |
[3] | S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III MR1931083 MR1532744 MR0155257 Zbl 1008.57001 Zbl 0103.15101 |
[4] | K. Nomizu, "Lie groups and differential geometry" , Math. Soc. Japan (1956) MR0084166 Zbl 0071.15402 |
[5] | M.M. Postnikov, "Introduction to Morse theory" , Moscow (1971) (In Russian) MR0315739 |
[6] | S. Helgason, "Differential geometry and symmetric spaces" , Acad. Press (1962) MR0145455 Zbl 0111.18101 |
[a1] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) MR0666697 Zbl 0495.53036 |