Difference between revisions of "Affine morphism"
(Importing text file) |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a0110501.png | ||
+ | $#A+1 = 41 n = 0 | ||
+ | $#C+1 = 41 : ~/encyclopedia/old_files/data/A011/A.0101050 Affine morphism | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A morphism of schemes $ f: X \rightarrow S $ | ||
+ | such that the pre-image of any open affine subscheme in $ S $ | ||
+ | is an affine [[Scheme|scheme]]. The scheme $ X $ | ||
+ | is called an affine $ S $- | ||
+ | scheme. | ||
+ | |||
+ | Let $ S $ | ||
+ | be a scheme, let $ A $ | ||
+ | be a quasi-coherent sheaf of $ {\mathcal O} _ {S} $-algebras and let $ U _ {i} $ | ||
+ | be open affine subschemes in $ S $ | ||
+ | which form a covering of $ S $. | ||
+ | Then the glueing of the affine schemes $ { \mathop{\rm Spec} } \Gamma (U _ {i} , A) $ | ||
+ | determines an affine $ S $-scheme, denoted by $ { \mathop{\rm Spec} } A $. | ||
+ | Conversely, any affine $ S $-scheme definable by an affine morphism $ f: X \rightarrow S $ | ||
+ | is isomorphic (as a scheme over $ S $) | ||
+ | to the scheme $ { \mathop{\rm Spec} } f _ {*} ( {\mathcal O} _ {X} ) $. | ||
+ | The set of $ S $-morphisms of an $ S $-scheme $ f: Z \rightarrow S $ | ||
+ | into the affine $ S $-scheme $ { \mathop{\rm Spec} } A $ | ||
+ | is in bijective correspondence with the homomorphisms of the sheaves of $ {\mathcal O} _ {S} $-algebras $ A \rightarrow f _ {*} ( {\mathcal O} _ {Z} ) $. | ||
Closed imbeddings of schemes or arbitrary morphisms of affine schemes are affine morphisms; other examples of affine morphisms are entire morphisms and finite morphisms. Thus the morphism of normalization of a scheme is an affine morphism. Under composition and base change the property of a morphism to be an affine morphism is preserved. | Closed imbeddings of schemes or arbitrary morphisms of affine schemes are affine morphisms; other examples of affine morphisms are entire morphisms and finite morphisms. Thus the morphism of normalization of a scheme is an affine morphism. Under composition and base change the property of a morphism to be an affine morphism is preserved. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "The cohomology theory of abstract algebraic varieties" , ''Proc. Internat. Math. Congress Edinburgh, 1958'' , Cambridge Univ. Press (1960) pp. 103–118 {{MR|0130879}} {{ZBL|0119.36902}} </TD></TR> | |
− | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> J. Dieudonné, A. Grothendieck, "Elements de géométrie algébrique" ''Publ. Math. IHES'' , '''4''' (1960) {{MR|0217083}} {{MR|0163908}} {{ZBL|0203.23301}} {{ZBL|0136.15901}} </TD></TR> | |
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | + | $ f : X \rightarrow S $ | |
+ | is a finite morphism if there exist a covering $ ( S _ \alpha ) $ | ||
+ | of $ S $ | ||
+ | by affine open subschemes such that $ f ^ {-1} ( S _ \alpha ) $ | ||
+ | is affine for all $ \alpha $ | ||
+ | and such that the ring $ B _ \alpha $ | ||
+ | of $ f ^ {-1} ( S _ \alpha ) $ | ||
+ | is finitely generated as a module over the ring $ A _ \alpha $ | ||
+ | of $ S _ \alpha $. | ||
+ | The morphism is entire if $ B _ \alpha $ | ||
+ | is entire over $ A _ \alpha $, | ||
+ | i.e. if every $ x \in B _ \alpha $ | ||
+ | integral over $ A _ \alpha $, | ||
+ | which means that it is a root of a monic polynomial with coefficients in $ A _ \alpha $, | ||
+ | or, equivalently, if for each $ x \in B _ \alpha $ | ||
+ | the module $ A _ \alpha [ x ] $ | ||
+ | is a finitely-generated module over $ A _ \alpha $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Latest revision as of 16:09, 18 July 2024
A morphism of schemes $ f: X \rightarrow S $
such that the pre-image of any open affine subscheme in $ S $
is an affine scheme. The scheme $ X $
is called an affine $ S $-
scheme.
Let $ S $ be a scheme, let $ A $ be a quasi-coherent sheaf of $ {\mathcal O} _ {S} $-algebras and let $ U _ {i} $ be open affine subschemes in $ S $ which form a covering of $ S $. Then the glueing of the affine schemes $ { \mathop{\rm Spec} } \Gamma (U _ {i} , A) $ determines an affine $ S $-scheme, denoted by $ { \mathop{\rm Spec} } A $. Conversely, any affine $ S $-scheme definable by an affine morphism $ f: X \rightarrow S $ is isomorphic (as a scheme over $ S $) to the scheme $ { \mathop{\rm Spec} } f _ {*} ( {\mathcal O} _ {X} ) $. The set of $ S $-morphisms of an $ S $-scheme $ f: Z \rightarrow S $ into the affine $ S $-scheme $ { \mathop{\rm Spec} } A $ is in bijective correspondence with the homomorphisms of the sheaves of $ {\mathcal O} _ {S} $-algebras $ A \rightarrow f _ {*} ( {\mathcal O} _ {Z} ) $.
Closed imbeddings of schemes or arbitrary morphisms of affine schemes are affine morphisms; other examples of affine morphisms are entire morphisms and finite morphisms. Thus the morphism of normalization of a scheme is an affine morphism. Under composition and base change the property of a morphism to be an affine morphism is preserved.
References
[1] | A. Grothendieck, "The cohomology theory of abstract algebraic varieties" , Proc. Internat. Math. Congress Edinburgh, 1958 , Cambridge Univ. Press (1960) pp. 103–118 MR0130879 Zbl 0119.36902 |
[2] | J. Dieudonné, A. Grothendieck, "Elements de géométrie algébrique" Publ. Math. IHES , 4 (1960) MR0217083 MR0163908 Zbl 0203.23301 Zbl 0136.15901 |
Comments
$ f : X \rightarrow S $ is a finite morphism if there exist a covering $ ( S _ \alpha ) $ of $ S $ by affine open subschemes such that $ f ^ {-1} ( S _ \alpha ) $ is affine for all $ \alpha $ and such that the ring $ B _ \alpha $ of $ f ^ {-1} ( S _ \alpha ) $ is finitely generated as a module over the ring $ A _ \alpha $ of $ S _ \alpha $. The morphism is entire if $ B _ \alpha $ is entire over $ A _ \alpha $, i.e. if every $ x \in B _ \alpha $ integral over $ A _ \alpha $, which means that it is a root of a monic polynomial with coefficients in $ A _ \alpha $, or, equivalently, if for each $ x \in B _ \alpha $ the module $ A _ \alpha [ x ] $ is a finitely-generated module over $ A _ \alpha $.
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
Affine morphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Affine_morphism&oldid=19150