Difference between revisions of "Projective spectrum of a ring"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0753601.png | ||
+ | $#A+1 = 41 n = 0 | ||
+ | $#C+1 = 41 : ~/encyclopedia/old_files/data/P075/P.0705360 Projective spectrum of a ring | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Scheme|scheme]] $ X = \mathop{\rm Proj} ( R) $ | |
+ | associated with a graded ring $ R = \sum _ {n=0} ^ \infty R _ {n} $( | ||
+ | cf. also [[Graded module|Graded module]]). As a set of points, $ X $ | ||
+ | is a set of homogeneous prime ideals $ \mathfrak p \subset R $ | ||
+ | such that $ \mathfrak p $ | ||
+ | does not contain $ \sum _ {n=1} ^ \infty R _ {n} $. | ||
+ | The topology on $ X $ | ||
+ | is defined by the following basis of open sets: $ X _ {f} = \{ {\mathfrak p } : {f \notin \mathfrak p } \} $ | ||
+ | for $ f \in R _ {n} $, | ||
+ | $ n > 0 $. | ||
+ | The structure sheaf $ {\mathcal O} _ {X} $ | ||
+ | of the locally ringed space $ X $ | ||
+ | is defined on the basis open sets as follows: $ \Gamma ( X _ {f} , {\mathcal O} _ {X} ) = [ R _ {(} f) ] _ {0} $, | ||
+ | that is, the subring of the elements of degree $ 0 $ | ||
+ | of the ring $ R _ {(} f) $ | ||
+ | of fractions with respect to the multiplicative system $ \{ f ^ { n } \} _ {n \geq 0 } $. | ||
− | + | The most important example of a projective spectrum is $ P ^ {n} = \mathop{\rm Proj} \mathbf Z [ T _ {0} \dots T _ {n} ] $. | |
− | + | The set of its $ k $- | |
+ | valued points $ P _ {k} ^ {n} $ | ||
+ | for any field $ k $ | ||
+ | is in natural correspondence with the set of points of the $ n $- | ||
+ | dimensional projective space over the field $ k $. | ||
+ | If all the rings $ R _ {m} $ | ||
+ | as $ R _ {0} $- | ||
+ | modules are spanned by $ R _ {1} \otimes \dots \otimes R _ {1} $( | ||
+ | $ m $ | ||
+ | terms), then an additional structure is defined on $ \mathop{\rm Proj} ( R) $. | ||
+ | Namely, the covering $ \{ {X _ {f} } : {f \in R _ {1} } \} $ | ||
+ | and the units $ f / g $ | ||
+ | determine a Čech $ 1 $- | ||
+ | cocycle on $ \mathop{\rm Proj} ( R) $ | ||
+ | to which an [[Invertible sheaf|invertible sheaf]], denoted by $ {\mathcal O} ( 1) $, | ||
+ | corresponds. The symbol $ {\mathcal O} ( n) $ | ||
+ | usually denotes the $ n $- | ||
+ | th tensor power $ {\mathcal O} ( 1) ^ {\otimes n } $ | ||
+ | of $ {\mathcal O} ( 1) $. | ||
+ | There exists a canonical homomorphism $ \phi _ {n} : R _ {n} \rightarrow \Gamma ( X , {\mathcal O} ( n) ) $, | ||
+ | indicating the geometric meaning of the grading of the ring $ R $( | ||
+ | see [[#References|[1]]]). If, for example, $ R = k [ T _ {0} \dots T _ {n} ] $, | ||
+ | then $ {\mathcal O} ( 1) $ | ||
+ | corresponds to a sheaf of hyperplane sections in $ P _ {k} ^ {n} $. | ||
+ | ====References==== | ||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique" ''Publ. Math. IHES'' , '''1–4''' (1960–1967) {{MR|0238860}} {{MR|0217086}} {{MR|0199181}} {{MR|0173675}} {{MR|0163911}} {{MR|0217085}} {{MR|0217084}} {{MR|0163910}} {{MR|0163909}} {{MR|0217083}} {{MR|0163908}} {{ZBL|0203.23301}} {{ZBL|0144.19904}} {{ZBL|0135.39701}} {{ZBL|0136.15901}} {{ZBL|0118.36206}} </TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== |
Latest revision as of 05:57, 16 July 2024
A scheme $ X = \mathop{\rm Proj} ( R) $
associated with a graded ring $ R = \sum _ {n=0} ^ \infty R _ {n} $(
cf. also Graded module). As a set of points, $ X $
is a set of homogeneous prime ideals $ \mathfrak p \subset R $
such that $ \mathfrak p $
does not contain $ \sum _ {n=1} ^ \infty R _ {n} $.
The topology on $ X $
is defined by the following basis of open sets: $ X _ {f} = \{ {\mathfrak p } : {f \notin \mathfrak p } \} $
for $ f \in R _ {n} $,
$ n > 0 $.
The structure sheaf $ {\mathcal O} _ {X} $
of the locally ringed space $ X $
is defined on the basis open sets as follows: $ \Gamma ( X _ {f} , {\mathcal O} _ {X} ) = [ R _ {(} f) ] _ {0} $,
that is, the subring of the elements of degree $ 0 $
of the ring $ R _ {(} f) $
of fractions with respect to the multiplicative system $ \{ f ^ { n } \} _ {n \geq 0 } $.
The most important example of a projective spectrum is $ P ^ {n} = \mathop{\rm Proj} \mathbf Z [ T _ {0} \dots T _ {n} ] $. The set of its $ k $- valued points $ P _ {k} ^ {n} $ for any field $ k $ is in natural correspondence with the set of points of the $ n $- dimensional projective space over the field $ k $.
If all the rings $ R _ {m} $ as $ R _ {0} $- modules are spanned by $ R _ {1} \otimes \dots \otimes R _ {1} $( $ m $ terms), then an additional structure is defined on $ \mathop{\rm Proj} ( R) $. Namely, the covering $ \{ {X _ {f} } : {f \in R _ {1} } \} $ and the units $ f / g $ determine a Čech $ 1 $- cocycle on $ \mathop{\rm Proj} ( R) $ to which an invertible sheaf, denoted by $ {\mathcal O} ( 1) $, corresponds. The symbol $ {\mathcal O} ( n) $ usually denotes the $ n $- th tensor power $ {\mathcal O} ( 1) ^ {\otimes n } $ of $ {\mathcal O} ( 1) $. There exists a canonical homomorphism $ \phi _ {n} : R _ {n} \rightarrow \Gamma ( X , {\mathcal O} ( n) ) $, indicating the geometric meaning of the grading of the ring $ R $( see [1]). If, for example, $ R = k [ T _ {0} \dots T _ {n} ] $, then $ {\mathcal O} ( 1) $ corresponds to a sheaf of hyperplane sections in $ P _ {k} ^ {n} $.
References
[1] | D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) MR0209285 Zbl 0187.42701 |
[2] | A. Grothendieck, "Eléments de géométrie algébrique" Publ. Math. IHES , 1–4 (1960–1967) MR0238860 MR0217086 MR0199181 MR0173675 MR0163911 MR0217085 MR0217084 MR0163910 MR0163909 MR0217083 MR0163908 Zbl 0203.23301 Zbl 0144.19904 Zbl 0135.39701 Zbl 0136.15901 Zbl 0118.36206 |
Comments
See also Projective scheme.
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 91 MR0463157 Zbl 0367.14001 |
Projective spectrum of a ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projective_spectrum_of_a_ring&oldid=23937