Namespaces
Variants
Actions

Difference between revisions of "Pseudo-group structure"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 14: Line 14:
  
 
A maximal atlas  $  A $
 
A maximal atlas  $  A $
of smooth local diffeomorphisms (cf. [[Diffeomorphism|Diffeomorphism]]) from  $  M $
+
of smooth local diffeomorphisms (cf. [[Diffeomorphism]]) from  $  M $
 
onto a fixed manifold  $  V $,  
 
onto a fixed manifold  $  V $,  
 
all transition functions between them belonging to a given pseudo-group  $  \Gamma $
 
all transition functions between them belonging to a given pseudo-group  $  \Gamma $
Line 34: Line 34:
 
and  $  \psi :  W \rightarrow V $
 
and  $  \psi :  W \rightarrow V $
 
from  $  A $
 
from  $  A $
the transition function  $  \psi \circ \phi  ^ {-} 1 :  \phi ( U \cap W ) \rightarrow \psi ( U \cap W ) $
+
the transition function  $  \psi \circ \phi  ^ {-1} :  \phi ( U \cap W ) \rightarrow \psi ( U \cap W ) $
 
is a local transformation from the given pseudo-group  $  \Gamma $;  
 
is a local transformation from the given pseudo-group  $  \Gamma $;  
 
and c)  $  A $
 
and c)  $  A $
Line 74: Line 74:
  
 
4) Let  $  \Gamma $
 
4) Let  $  \Gamma $
be the pseudo-group of local transformations of  $  \mathbf R ^ {2n+} 1 $
+
be the pseudo-group of local transformations of  $  \mathbf R ^{2n+1} $
 
that preserve, up to a functional multiplier, the differential  $  1 $-
 
that preserve, up to a functional multiplier, the differential  $  1 $-
 
form
 
form
Line 80: Line 80:
 
$$  
 
$$  
 
d x  ^ {0} +
 
d x  ^ {0} +
\sum _ { i= } 1 ^ { n }  
+
\sum_{i=1}^ { n }  
x  ^ {2i-} 1 d x  ^ {2i} .
+
x  ^ {2i-1}  d x  ^ {2i} .
 
$$
 
$$
  
Line 147: Line 147:
 
equivariant  $  1 $-
 
equivariant  $  1 $-
 
form  $  \theta  ^ {k} :  T B  ^ {k} \rightarrow V + \mathfrak g  ^ {k} ( V) $
 
form  $  \theta  ^ {k} :  T B  ^ {k} \rightarrow V + \mathfrak g  ^ {k} ( V) $
that is horizontal relative to the projection  $  B  ^ {k} \rightarrow B  ^ {k-} 1 $.  
+
that is horizontal relative to the projection  $  B  ^ {k} \rightarrow B  ^ {k-1} $.  
 
Here  $  \mathfrak g  ^ {k} ( V) $
 
Here  $  \mathfrak g  ^ {k} ( V) $
 
is the Lie algebra of the isotropy group  $  G  ^ {k} ( \Gamma ) $.  
 
is the Lie algebra of the isotropy group  $  G  ^ {k} ( \Gamma ) $.  
Line 160: Line 160:
 
\frac{d}{dt}
 
\frac{d}{dt}
  
j _ {0}  ^ {k-} 1 ( \phi _ {t} \circ \phi _ {0}  ^ {-} 1 )
+
j _ {0}  ^ {k-1} ( \phi _ {t} \circ \phi _ {0}  ^ {-1} )
 
\right | _ {t = 0 }  ,
 
\right | _ {t = 0 }  ,
 
$$
 
$$
Line 219: Line 219:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "La géométrie des éspaces Riemanniennes" , ''Mém. Sci. Math.'' , '''9''' , Gauthier-Villars  (1925)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V. Guillemin,  S. Sternberg,  "Deformation theory of pseudogroup structures" , ''Mem. Amer. Math. Soc.'' , '''64''' , Amer. Math. Soc.  (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.S. Pollack,  "The integrability of pseudogroup structures"  ''J. Diff. Geom.'' , '''9''' :  3  (1974)  pp. 355–390</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710145.png" />-structures. Part A: General theory of deformations"  ''Math. Ann.'' , '''155''' :  4  (1964)  pp. 292–315</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710146.png" />-structures. Part B: Deformations of geometric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710147.png" />-structures"  ''Math. Ann.'' , '''158''' :  5  (1965)  pp. 326–351</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.F. Pommaret,  "Théorie des déformations des structures"  ''Ann. Inst. H. Poincaré Nouvelle Sér.'' , '''18'''  (1973)  pp. 285–352  (English abstract)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L. Berard Bergery,  J.-P. Bourgignon,  J. Lafontaine,  "Déformations localement triviales des variétés Riemanniennes" , ''Differential geometry'' , ''Proc. Symp. Pure Math.'' , '''27''' , Amer. Math. Soc.  (1975)  pp. 3–32</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups I. Infinitesimal deformations of structure"  ''Ann. of Math.'' , '''76''' :  2  (1962)  pp. 306–398</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups II. Deformations of structure"  ''Ann. of Math.'' , '''76''' :  3  (1962)  pp. 399–445</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "La géométrie des éspaces Riemanniennes" , ''Mém. Sci. Math.'' , '''9''' , Gauthier-Villars  (1925)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  V. Guillemin,  S. Sternberg,  "Deformation theory of pseudogroup structures" , ''Mem. Amer. Math. Soc.'' , '''64''' , Amer. Math. Soc.  (1966)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  A.S. Pollack,  "The integrability of pseudogroup structures"  ''J. Diff. Geom.'' , '''9''' :  3  (1974)  pp. 355–390</TD></TR>
 +
<TR><TD valign="top">[4a]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of $G$-structures. Part A: General theory of deformations"  ''Math. Ann.'' , '''155''' :  4  (1964)  pp. 292–315</TD></TR>
 +
<TR><TD valign="top">[4b]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of $G$-structures. Part B: Deformations of geometric $G$-structures"  ''Math. Ann.'' , '''158''' :  5  (1965)  pp. 326–351</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  J.F. Pommaret,  "Théorie des déformations des structures"  ''Ann. Inst. H. Poincaré Nouvelle Sér.'' , '''18'''  (1973)  pp. 285–352  (English abstract)</TD></TR>
 +
<TR><TD valign="top">[6]</TD> <TD valign="top">  L. Berard Bergery,  J.-P. Bourguignon,  J. Lafontaine,  "Déformations localement triviales des variétés Riemanniennes" , ''Differential geometry'' , ''Proc. Symp. Pure Math.'' , '''27''' , Amer. Math. Soc.  (1975)  pp. 3–32</TD></TR>
 +
<TR><TD valign="top">[7a]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups I. Infinitesimal deformations of structure"  ''Ann. of Math.'' , '''76''' :  2  (1962)  pp. 306–398</TD></TR>
 +
<TR><TD valign="top">[7b]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups II. Deformations of structure"  ''Ann. of Math.'' , '''76''' :  3  (1962)  pp. 399–445</TD></TR>
 +
</table>
  
 
====Comments====
 
====Comments====

Latest revision as of 19:05, 9 July 2024


on a manifold $ M $

A maximal atlas $ A $ of smooth local diffeomorphisms (cf. Diffeomorphism) from $ M $ onto a fixed manifold $ V $, all transition functions between them belonging to a given pseudo-group $ \Gamma $ of local transformations of $ V $. The pseudo-group $ \Gamma $ is called the defining pseudo-group, and $ V $ is called the model space. The pseudo-group structure with defining group $ \Gamma $ is also called a $ \Gamma $- structure. More precisely, a set $ A $ of $ V $- valued charts of a manifold $ M $( i.e. of diffeomorphisms $ \phi : U \rightarrow V $ of open subsets $ U \subset M $ onto open subsets $ \phi ( U) \subset V $) is called a pseudo-group structure if a) any point $ x \in M $ belongs to the domain of definition of a chart $ \phi $ of $ A $; b) for any charts $ \phi : U \rightarrow V $ and $ \psi : W \rightarrow V $ from $ A $ the transition function $ \psi \circ \phi ^ {-1} : \phi ( U \cap W ) \rightarrow \psi ( U \cap W ) $ is a local transformation from the given pseudo-group $ \Gamma $; and c) $ A $ is a maximal set of charts satisfying condition b).

Examples of pseudo-group structures.

1) A pseudo-group $ \Gamma $ of transformations of a manifold $ V $ gives a pseudo-group structure $ ( V , \Gamma ) $ on $ V $ whose charts are the local transformations of $ \Gamma $. It is called the standard flat $ \Gamma $- structure.

2) Let $ V = K ^ {n} $ be an $ n $- dimensional vector space over $ K = \mathbf R , \mathbf C $ or a left module over the skew-field of quaternions $ K = \mathbf H $, and let $ \Gamma $ be the pseudo-group of local transformations of $ V $ whose principal linear parts belong to the group $ \mathop{\rm GL} ( n , K ) $. The corresponding $ \Gamma $- structure on a manifold $ M $ is the structure of a smooth manifold if $ K = \mathbf R $, of a complex-analytic manifold if $ K = \mathbf C $ and of a special quaternionic manifold if $ K = \mathbf H $.

3) Let $ \Gamma $ be the pseudo-group of local transformations of a vector space $ V $ preserving a given tensor $ S $. Specifying a $ \Gamma $- structure is equivalent to specifying an integrable (global) tensor field of type $ S $ on a manifold $ M $. E.g., if $ S $ is a non-degenerate skew-symmetric $ 2 $- form, then the $ \Gamma $- structure is a symplectic structure.

4) Let $ \Gamma $ be the pseudo-group of local transformations of $ \mathbf R ^{2n+1} $ that preserve, up to a functional multiplier, the differential $ 1 $- form

$$ d x ^ {0} + \sum_{i=1}^ { n } x ^ {2i-1} d x ^ {2i} . $$

Then the $ \Gamma $- structure is a contact structure.

5) Let $ V = G / H $ be a homogeneous space of a Lie group $ G $, and let $ \Gamma $ be the pseudo-group of local transformations of $ V $ that can be lifted to transformations of $ G $. Then the $ \Gamma $- structure is called the pseudo-group structure determined by the homogeneous space $ V $. Examples of such structures are the structure of a space of constant curvature (in particular, that of a locally Euclidean space), and conformally and projectively flat structures.

Let $ \Gamma $ be a transitive Lie pseudo-group of transformations of $ V = \mathbf R ^ {n} $ of order $ l $, see Pseudo-group. The $ \Gamma $- structure $ A $ on a manifold $ M $ determines a principal subbundle $ \pi _ {k} : B ^ {k} \rightarrow M $ of the co-frame bundle of arbitrary order $ k $ on $ M $, consisting of the $ k $- jets of charts of $ A $:

$$ B ^ {k} = \ \{ {j _ {x} ^ {k} \phi } : {\phi \in A , \phi ( x) = 0 } \} ,\ \ \pi _ {k} ( j _ {x} ^ {k} \phi ) = x . $$

The structure group of $ \pi _ {k} $ is the $ k $- th order isotropy group $ G ^ {k} ( \Gamma ) $ of $ \Gamma $, which acts on $ B ^ {k} $ by the formula

$$ j _ {0} ^ {k} ( a) j _ {x} ^ {k} \phi = \ j _ {x} ^ {k} ( a \circ \phi ) . $$

The bundle $ \pi _ {k} $ is called the $ k $- th structure bundle, or $ G ^ {k} ( \Gamma ) $- structure, determined by the pseudo-group structure $ A $. The bundle $ \pi _ {l} $, with $ l $ the order of $ \Gamma $, in turn, uniquely determines the pseudo-group structure $ A $ as the set of charts $ \phi : U \rightarrow V $ for which

$$ j _ {x} ^ {l} ( a \circ \phi ) \in B ^ {l} \ \ \textrm{ if } a \in \Gamma , a \circ \phi ( x) = 0 . $$

The geometry of $ \pi _ {k} $ is characterized by the presence of a canonical $ G ^ {k} ( \Gamma ) $- equivariant $ 1 $- form $ \theta ^ {k} : T B ^ {k} \rightarrow V + \mathfrak g ^ {k} ( V) $ that is horizontal relative to the projection $ B ^ {k} \rightarrow B ^ {k-1} $. Here $ \mathfrak g ^ {k} ( V) $ is the Lie algebra of the isotropy group $ G ^ {k} ( \Gamma ) $. The $ 1 $- form $ \theta ^ {k} $ is given by

$$ \left . \theta _ {b ^ {k} } ^ {k} ( \dot{b} ^ {k} ) = \ \frac{d}{dt} j _ {0} ^ {k-1} ( \phi _ {t} \circ \phi _ {0} ^ {-1} ) \right | _ {t = 0 } , $$

where

$$ b ^ {k} = j _ {x _ {0} } ^ {k} ( \phi _ {0} ) ,\ \ \dot{b} ^ {k} = \frac{d}{dt} j _ {x _ {t} } ^ {k} ( \phi _ {t} ) , $$

$$ \phi _ {t} \in A ,\ \phi _ {t} ( x _ {t} ) = 0 ,\ t \in [ 0 , \epsilon ] , $$

and satisfies a certain Maurer–Cartan structure equation (cf. also Maurer–Cartan form). The Lie algebra of infinitesimal automorphisms of the $ \Gamma $- structure can be characterized as the Lie algebra of projectable vector fields on $ B ^ {l} $ that preserve the canonical $ 1 $- form $ \theta ^ {l} $.

The basic problem in the theory of pseudo-group structures is the description of pseudo-group structures on manifolds with a defining pseudo-group $ \Gamma $, up to equivalence. Two pseudo-group structures on a manifold are called equivalent if one of them can be reduced to the other by a diffeomorphism of the manifold.

Let $ \Gamma $ be a globalizing transitive pseudo-group of transformations of a simply-connected manifold $ V $. Any simply-connected manifold with a $ \Gamma $- structure $ A $ admits a mapping $ \rho : M \rightarrow V $, called a Cartan development, that locally is an isomorphism of $ \Gamma $- structures. If $ A $ has some completeness property, then $ \rho $ is an isomorphism of $ \Gamma $- structures and all $ \Gamma $- structures of the type considered are forms of the standard $ \Gamma $- structure $ V $, i.e. are obtained from $ V $ by factorization by a freely-acting discrete automorphism group $ ( V , \Gamma ) $. This is the case, e.g. for (pseudo-)Riemannian structures of constant curvature and for conformally-flat structures on compact manifolds $ M ^ {n} $, $ n > 2 $.

The theory of deformations, originally developed for complex structures, occupies an important place in the theory of pseudo-group structures. In it one studies problems of the description of non-trivial deformations of a $ \Gamma $- structure $ A $, i.e. a family $ A _ {t} $ of $ \Gamma $- structures containing the given $ \Gamma $- structure and smoothly depending on a parameter $ t $, modulo trivial deformations. The space of formal infinitesimal non-trivial deformations of a given $ \Gamma $- structure is described by the one-dimensional cohomology space $ H ^ {1} ( M , \Theta ) $ of $ M $ with coefficients in the sheaf $ \Theta $ of germs of infinitesimal automorphisms of $ A $. The $ \Gamma $- structure is rigid if this space is trivial. If the two-dimensional cohomology space is trivial, $ H ^ {2} ( H , \Theta ) = 0 $, one can prove, under certain assumptions, that there exist non-trivial deformations of the $ \Gamma $- structure, corresponding to given infinitesimal deformations from $ H ^ {1} ( M , \Theta ) $.

References

[1] E. Cartan, "La géométrie des éspaces Riemanniennes" , Mém. Sci. Math. , 9 , Gauthier-Villars (1925)
[2] V. Guillemin, S. Sternberg, "Deformation theory of pseudogroup structures" , Mem. Amer. Math. Soc. , 64 , Amer. Math. Soc. (1966)
[3] A.S. Pollack, "The integrability of pseudogroup structures" J. Diff. Geom. , 9 : 3 (1974) pp. 355–390
[4a] P.A. Griffiths, "Deformations of $G$-structures. Part A: General theory of deformations" Math. Ann. , 155 : 4 (1964) pp. 292–315
[4b] P.A. Griffiths, "Deformations of $G$-structures. Part B: Deformations of geometric $G$-structures" Math. Ann. , 158 : 5 (1965) pp. 326–351
[5] J.F. Pommaret, "Théorie des déformations des structures" Ann. Inst. H. Poincaré Nouvelle Sér. , 18 (1973) pp. 285–352 (English abstract)
[6] L. Berard Bergery, J.-P. Bourguignon, J. Lafontaine, "Déformations localement triviales des variétés Riemanniennes" , Differential geometry , Proc. Symp. Pure Math. , 27 , Amer. Math. Soc. (1975) pp. 3–32
[7a] D.C. Spencer, "Deformation of structures on manifolds defined by transitive, continuous pseudogroups I. Infinitesimal deformations of structure" Ann. of Math. , 76 : 2 (1962) pp. 306–398
[7b] D.C. Spencer, "Deformation of structures on manifolds defined by transitive, continuous pseudogroups II. Deformations of structure" Ann. of Math. , 76 : 3 (1962) pp. 399–445

Comments

For the topic of classifying spaces for $ \Gamma $- structures cf. [a2].

References

[a1] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Interscience (1963) pp. Chapt. 1
[a2] A. Haefliger, "Homotopy and integrability" J.N. Mordeson (ed.) et al. (ed.) , Structure of arbitrary purely inseparable extension fields , Lect. notes in math. , 173 , Springer (1971) pp. 133–163
[a3] J.F. Pommaret, "Systems of partial differential equations and Lie pseudogroups" , Gordon & Breach (1978)
[a4] M. Hazewinkel (ed.) M. Gerstenhaber (ed.) , Deformation theory of algebras and structures and applications , Kluwer (1988)
How to Cite This Entry:
Pseudo-group structure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-group_structure&oldid=48347
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article