Difference between revisions of "Sommerfeld integral"
(Importing text file) |
(→References: zbl) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0861401.png | ||
+ | $#A+1 = 16 n = 0 | ||
+ | $#C+1 = 16 : ~/encyclopedia/old_files/data/S086/S.0806140 Sommerfeld integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An integral representation of the [[cylinder functions]] by a contour integral: The [[Hankel functions]] of the first kind are given by | |
− | + | $$ | |
+ | H _ \nu ^ {(1)} ( z) = | ||
+ | \frac{1} \pi | ||
+ | \int\limits _ {C _ {1} } e ^ {i z \cos t } | ||
+ | e ^ {i \nu ( t - \pi / 2) } dt , | ||
+ | $$ | ||
− | where | + | where $ C _ {1} $ |
+ | is a curve from $ - \eta + i \infty $ | ||
+ | to $ \eta - i \infty $, | ||
+ | $ 0 \leq \eta \leq \pi $; | ||
+ | the Hankel functions of the second kind are given by | ||
− | + | $$ | |
+ | H _ \nu ^ {(2)} ( z ) = | ||
+ | \frac{1} \pi | ||
+ | \int\limits _ {C _ {2} } e ^ {i z \cos t } | ||
+ | e ^ {i \nu ( t - \pi /2 ) } dt , | ||
+ | $$ | ||
− | where | + | where $ C _ {2} $ |
+ | is a curve from $ \eta - i \infty $ | ||
+ | to $ 2 \pi - \eta + i \infty $, | ||
+ | $ 0 \leq \eta \leq \pi $; | ||
+ | the [[Bessel functions|Bessel functions]] of the first kind are given by | ||
− | + | $$ | |
− | + | J _ \nu ( z ) = | |
+ | \frac{1}{2 \pi } | ||
+ | \int\limits _ {C _ {3} } e ^ {i z \cos t } | ||
+ | e ^ {i \nu ( t - \pi / 2 ) } dt , | ||
+ | $$ | ||
+ | where $ C _ {3} $ | ||
+ | is a curve from $ - \eta + i \infty $ | ||
+ | to $ 2 \pi - \eta + i \infty $, | ||
+ | $ 0 \leq \eta \leq \pi $. | ||
+ | The representation is valid in the domain $ - \eta < \mathop{\rm arg} z < \pi - \eta $, | ||
+ | and is named after A. Sommerfeld [[#References|[1]]]. | ||
+ | ====References==== | ||
+ | <table> | ||
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Sommerfeld, "Mathematische Theorie der Diffraction" ''Math. Ann.'' , '''47''' (1896) pp. 317–374 {{ZBL|27.0706.03}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1–2''' , Cambridge Univ. Press (1952)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
The Hankel functions are also called Bessel functions of the first kind. | The Hankel functions are also called Bessel functions of the first kind. |
Latest revision as of 17:50, 7 June 2024
An integral representation of the cylinder functions by a contour integral: The Hankel functions of the first kind are given by
$$ H _ \nu ^ {(1)} ( z) = \frac{1} \pi \int\limits _ {C _ {1} } e ^ {i z \cos t } e ^ {i \nu ( t - \pi / 2) } dt , $$
where $ C _ {1} $ is a curve from $ - \eta + i \infty $ to $ \eta - i \infty $, $ 0 \leq \eta \leq \pi $; the Hankel functions of the second kind are given by
$$ H _ \nu ^ {(2)} ( z ) = \frac{1} \pi \int\limits _ {C _ {2} } e ^ {i z \cos t } e ^ {i \nu ( t - \pi /2 ) } dt , $$
where $ C _ {2} $ is a curve from $ \eta - i \infty $ to $ 2 \pi - \eta + i \infty $, $ 0 \leq \eta \leq \pi $; the Bessel functions of the first kind are given by
$$ J _ \nu ( z ) = \frac{1}{2 \pi } \int\limits _ {C _ {3} } e ^ {i z \cos t } e ^ {i \nu ( t - \pi / 2 ) } dt , $$
where $ C _ {3} $ is a curve from $ - \eta + i \infty $ to $ 2 \pi - \eta + i \infty $, $ 0 \leq \eta \leq \pi $. The representation is valid in the domain $ - \eta < \mathop{\rm arg} z < \pi - \eta $, and is named after A. Sommerfeld [1].
References
[1] | A. Sommerfeld, "Mathematische Theorie der Diffraction" Math. Ann. , 47 (1896) pp. 317–374 Zbl 27.0706.03 |
[2] | E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German) |
[3] | G.N. Watson, "A treatise on the theory of Bessel functions" , 1–2 , Cambridge Univ. Press (1952) |
Comments
The Hankel functions are also called Bessel functions of the first kind.
Sommerfeld integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sommerfeld_integral&oldid=11611