Difference between revisions of "Neumann d-bar problem"
(Importing text file) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
− | + | ''Neumann DBAR problem, $ \overline \partial \; $- | |
+ | problem, $ \overline \partial \; $- | ||
+ | Neumann problem, DBAR problem, Neumann problem for the Cauchy–Riemann complex'' | ||
− | + | A non-coercive boundary problem for the complex Laplacian. Let $ M $ | |
+ | be a relatively compact domain of a complex manifold $ M ^{1} $ | ||
+ | of dimension $ n + 1 $ | ||
+ | with smooth boundary $ b M $. | ||
+ | The Cauchy–Riemann operator $ \overline \partial \; $( | ||
+ | defined on functions on a domain $ M \subset \mathbf C ^{n+1} $ | ||
+ | by $ \overline \partial \; f = \sum _{i=1} ^{n+1} ( {\partial f} / {\partial \overline{z}\; _ i} ) \ d \overline{z}\; _{i} $) | ||
+ | naturally extends to define the Dolbeault complex or Cauchy–Riemann complex $$ | ||
+ | 0 \rightarrow \Lambda ^{p,0} (M) \stackrel{ {\overline \partial \;}} \rightarrow \Lambda ^{p,1} (M) \stackrel{ {\overline \partial \;}} \rightarrow \dots \stackrel{ {\overline \partial \;}} \rightarrow | ||
+ | \Lambda ^{p,n+1} (M) \rightarrow 0 , | ||
+ | $$ | ||
+ | where $ \Lambda ^{p,q} (M) $ | ||
+ | is the space of differential forms of type $ ( p ,\ q ) $ | ||
+ | on $ M $. | ||
+ | The holomorphic functions are the solutions of $ \overline \partial \; f = 0 $ | ||
+ | and the inhomogeneous equation $ \overline \partial \; f = \phi $( | ||
+ | under the necessary compactibility condition $ \overline \partial \; \phi = 0 $) | ||
+ | is also of interest. For instance, in connection with the Levi problem: Given $ x \in b M $, | ||
+ | is there a holomorphic function on $ M $ | ||
+ | which blows up at $ x $? | ||
+ | Using a general formalism of D.C. Spencer (and general Hilbert space theory), the problem $ \overline \partial \; f = \phi $ | ||
+ | leads to the $ \overline \partial \; $- | ||
+ | Neumann problem $$ \tag{A1} | ||
+ | ( \overline \partial \; \overline \partial \; {} ^{*} + \overline \partial \; {} ^{*} \overline \partial \; ) u = \phi . | ||
+ | $$ | ||
+ | Here $ \overline \partial \; {} ^{*} $ | ||
+ | is the adjoint of $ \overline \partial \; $, | ||
+ | which is defined by $ \langle \overline \partial \; {} ^{*} f ,\ g \rangle = \langle f ,\ \overline \partial \; g \rangle $, | ||
+ | where the inner product is given by integration with respect to the volume form determined by a given Hermitian metric on $ \overline{M}\; $. | ||
+ | The operator $ \square = \overline \partial \; \overline \partial \; {} ^{*} + \overline \partial \; {} ^{*} \overline \partial \; $ | ||
+ | is called the complex Laplacian. If $ M $ | ||
+ | is a [[Kähler manifold|Kähler manifold]], then $ \square = \Delta /2 $, | ||
+ | where $ \Delta $ | ||
+ | is the usual Laplacian of the de Rham complex, cf. [[De Rham cohomology|de Rham cohomology]]. | ||
− | + | Strictly speaking, equation (A1) should be written as $$ \tag{A2} | |
− | + | ( \overline \partial \; _{q} \overline \partial \; {} _{q} ^{*} + \overline \partial \; {} _{q+1} ^{*} \overline \partial \; _{q+1} ) (u) = \phi , | |
− | + | $$ | |
− | + | where $ u \in \Lambda ^{p,q+1} (M) $, | |
− | + | $ \overline \partial \; _{q} : \ \Lambda ^{p,q} (M) \rightarrow \Lambda ^{p,q+1} (M) $, | |
− | + | $ \overline \partial \; {} _{q} ^{*} : \ \Lambda ^{p,q+1} (M) \rightarrow \Lambda ^{p,q} (M) $; | |
− | + | $ q = - 1 ,\ 0 \dots n + 1 $, | |
− | + | $ \Lambda ^{p,-1} (M) = 0 = \Lambda ^{p,n+2} (M) $. | |
− | + | Thus equation (A2) comes naturally equipped with the boundary conditions $$ \tag{A3} | |
− | + | u \in \textrm{ Domain } ( \overline \partial \; {} _{q} ^{*} ), | |
− | + | $$ | |
− | + | $$ \tag{A4} | |
− | + | \overline \partial \; _{q+1} u \in \textrm{ Domain } ( \overline \partial \; {} _{q+1} ^{*} ). | |
− | + | $$( | |
− | + | The $ \overline \partial \; $- | |
− | + | Neumann boundary conditions.) The operator $ \square $ | |
− | + | is elliptic, but the boundary conditions are not. Nevertheless, J.J. Kohn was able to prove existence and to provide a systematic analysis of regularity. A main result is the estimate $$ | |
− | + | \| u \| _{s+1} \leq A _{s} \| \square u \| _{s} + \| u \| , | |
− | + | $$ | |
− | + | where $ \| \cdot \| _{s} $ | |
− | + | are Sobolev norms (cf. [[Sobolev space|Sobolev space]]). For more details cf. [[#References|[a1]]], [[#References|[a2]]]. A great deal of additional and related material can be found in [[#References|[a1]]]–[[#References|[a4]]]. | |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.B. Folland, J.J. Kohn, "The Neumann problem for the Cauchy–Riemann complex" , ''Annals Math. Studies'' , '''75''' , Princeton Univ. Press (1972)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P.C. Greiner, E.M. Sfein, "Estimates for the $\overline \partial$-Neumann problem" , Princeton Univ. Press (1977)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> F. Trèves, "Introduction to pseudodifferential and Fourier integral operators" , '''1''' , Plenum (1980) pp. Sect. III.8</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> J.J. Kohn, "Methods of partial differential equations in complex analysis" R.O. Wells jr. (ed.) , ''Several Complex Variables'' , '''1''' , Amer. Math. Soc. (1977) pp. 215–240</TD></TR> | ||
+ | </table> |
Latest revision as of 18:47, 26 May 2024
Neumann DBAR problem, $ \overline \partial \; $-
problem, $ \overline \partial \; $-
Neumann problem, DBAR problem, Neumann problem for the Cauchy–Riemann complex
A non-coercive boundary problem for the complex Laplacian. Let $ M $ be a relatively compact domain of a complex manifold $ M ^{1} $ of dimension $ n + 1 $ with smooth boundary $ b M $. The Cauchy–Riemann operator $ \overline \partial \; $( defined on functions on a domain $ M \subset \mathbf C ^{n+1} $ by $ \overline \partial \; f = \sum _{i=1} ^{n+1} ( {\partial f} / {\partial \overline{z}\; _ i} ) \ d \overline{z}\; _{i} $) naturally extends to define the Dolbeault complex or Cauchy–Riemann complex $$ 0 \rightarrow \Lambda ^{p,0} (M) \stackrel{ {\overline \partial \;}} \rightarrow \Lambda ^{p,1} (M) \stackrel{ {\overline \partial \;}} \rightarrow \dots \stackrel{ {\overline \partial \;}} \rightarrow \Lambda ^{p,n+1} (M) \rightarrow 0 , $$ where $ \Lambda ^{p,q} (M) $ is the space of differential forms of type $ ( p ,\ q ) $ on $ M $. The holomorphic functions are the solutions of $ \overline \partial \; f = 0 $ and the inhomogeneous equation $ \overline \partial \; f = \phi $( under the necessary compactibility condition $ \overline \partial \; \phi = 0 $) is also of interest. For instance, in connection with the Levi problem: Given $ x \in b M $, is there a holomorphic function on $ M $ which blows up at $ x $? Using a general formalism of D.C. Spencer (and general Hilbert space theory), the problem $ \overline \partial \; f = \phi $ leads to the $ \overline \partial \; $- Neumann problem $$ \tag{A1} ( \overline \partial \; \overline \partial \; {} ^{*} + \overline \partial \; {} ^{*} \overline \partial \; ) u = \phi . $$ Here $ \overline \partial \; {} ^{*} $ is the adjoint of $ \overline \partial \; $, which is defined by $ \langle \overline \partial \; {} ^{*} f ,\ g \rangle = \langle f ,\ \overline \partial \; g \rangle $, where the inner product is given by integration with respect to the volume form determined by a given Hermitian metric on $ \overline{M}\; $. The operator $ \square = \overline \partial \; \overline \partial \; {} ^{*} + \overline \partial \; {} ^{*} \overline \partial \; $ is called the complex Laplacian. If $ M $ is a Kähler manifold, then $ \square = \Delta /2 $, where $ \Delta $ is the usual Laplacian of the de Rham complex, cf. de Rham cohomology.
Strictly speaking, equation (A1) should be written as $$ \tag{A2} ( \overline \partial \; _{q} \overline \partial \; {} _{q} ^{*} + \overline \partial \; {} _{q+1} ^{*} \overline \partial \; _{q+1} ) (u) = \phi , $$ where $ u \in \Lambda ^{p,q+1} (M) $, $ \overline \partial \; _{q} : \ \Lambda ^{p,q} (M) \rightarrow \Lambda ^{p,q+1} (M) $, $ \overline \partial \; {} _{q} ^{*} : \ \Lambda ^{p,q+1} (M) \rightarrow \Lambda ^{p,q} (M) $; $ q = - 1 ,\ 0 \dots n + 1 $, $ \Lambda ^{p,-1} (M) = 0 = \Lambda ^{p,n+2} (M) $. Thus equation (A2) comes naturally equipped with the boundary conditions $$ \tag{A3} u \in \textrm{ Domain } ( \overline \partial \; {} _{q} ^{*} ), $$ $$ \tag{A4} \overline \partial \; _{q+1} u \in \textrm{ Domain } ( \overline \partial \; {} _{q+1} ^{*} ). $$( The $ \overline \partial \; $- Neumann boundary conditions.) The operator $ \square $ is elliptic, but the boundary conditions are not. Nevertheless, J.J. Kohn was able to prove existence and to provide a systematic analysis of regularity. A main result is the estimate $$ \| u \| _{s+1} \leq A _{s} \| \square u \| _{s} + \| u \| , $$ where $ \| \cdot \| _{s} $ are Sobolev norms (cf. Sobolev space). For more details cf. [a1], [a2]. A great deal of additional and related material can be found in [a1]–[a4].
References
[a1] | G.B. Folland, J.J. Kohn, "The Neumann problem for the Cauchy–Riemann complex" , Annals Math. Studies , 75 , Princeton Univ. Press (1972) |
[a2] | P.C. Greiner, E.M. Sfein, "Estimates for the $\overline \partial$-Neumann problem" , Princeton Univ. Press (1977) |
[a3] | F. Trèves, "Introduction to pseudodifferential and Fourier integral operators" , 1 , Plenum (1980) pp. Sect. III.8 |
[a4] | J.J. Kohn, "Methods of partial differential equations in complex analysis" R.O. Wells jr. (ed.) , Several Complex Variables , 1 , Amer. Math. Soc. (1977) pp. 215–240 |
Neumann d-bar problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neumann_d-bar_problem&oldid=16240