Difference between revisions of "Gårding inequality"
Ulf Rehmann (talk | contribs) m (moved Gårding inequality to Garding inequality: ascii title) |
(gather refs) |
||
| (2 intermediate revisions by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | g0433201.png | ||
| + | $#A+1 = 12 n = 0 | ||
| + | $#C+1 = 12 : ~/encyclopedia/old_files/data/G043/G.0403320 G\Azarding inequality | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | An inequality of the form | |
| − | |||
| − | |||
| − | + | $$ | |
| + | \| u \| _ {m} ^ {2} \leq \ | ||
| + | c _ {1} \mathop{\rm Re} B [ u, u] = \ | ||
| + | c _ {2} \| u \| _ {0} ^ {2} , | ||
| + | $$ | ||
| − | + | where $ u \in C _ {0} ^ \infty ( G) $ | |
| + | is a complex-valued function with compact support (in $ G $), | ||
| + | $ G \subset \mathbf R ^ {n} $ | ||
| + | is a bounded domain and | ||
| − | + | $$ | |
| + | B [ u, u] = \ | ||
| + | \sum _ {| s |, | t | \leq m } \ | ||
| + | \int\limits _ { G } a _ {st} D ^ {s} u \overline{ {D ^ {t} u }}\; dx | ||
| + | $$ | ||
| − | + | is a quadratic integral form with complex continuous coefficients $ a _ {st} $ | |
| − | + | in $ \overline{G}\; $. | |
| + | A sufficient condition for the Gårding inequality to be valid for any function $ u \in C _ {0} ^ \infty ( G) $ | ||
| + | is the existence of a positive constant $ c _ {0} $ | ||
| + | such that | ||
| + | $$ | ||
| + | \mathop{\rm Re} \sum _ {| s |, | t | \leq m } | ||
| + | a _ {st} \xi ^ {s} \xi ^ {t} \geq \ | ||
| + | c _ {0} | \xi | ^ {2m} , | ||
| + | $$ | ||
| + | for any $ x \in G $ | ||
| + | and all real vectors $ \xi = ( \xi ^ {1} \dots \xi ^ {n)} $. | ||
| + | Formulated and proved by L. Gårding [[#References|[1]]]. | ||
====Comments==== | ====Comments==== | ||
| Line 22: | Line 50: | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''3''' , Springer (1985)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> L. Gårding, "Dirichlet's problem for linear elliptic partial differential equations" ''Math. Scand.'' , '''1''' (1953) pp. 55–72</TD></TR> | ||
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1</TD></TR> | ||
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''3''' , Springer (1985)</TD></TR> | ||
| + | </table> | ||
Latest revision as of 14:02, 14 April 2024
An inequality of the form
$$ \| u \| _ {m} ^ {2} \leq \ c _ {1} \mathop{\rm Re} B [ u, u] = \ c _ {2} \| u \| _ {0} ^ {2} , $$
where $ u \in C _ {0} ^ \infty ( G) $ is a complex-valued function with compact support (in $ G $), $ G \subset \mathbf R ^ {n} $ is a bounded domain and
$$ B [ u, u] = \ \sum _ {| s |, | t | \leq m } \ \int\limits _ { G } a _ {st} D ^ {s} u \overline{ {D ^ {t} u }}\; dx $$
is a quadratic integral form with complex continuous coefficients $ a _ {st} $ in $ \overline{G}\; $. A sufficient condition for the Gårding inequality to be valid for any function $ u \in C _ {0} ^ \infty ( G) $ is the existence of a positive constant $ c _ {0} $ such that
$$ \mathop{\rm Re} \sum _ {| s |, | t | \leq m } a _ {st} \xi ^ {s} \xi ^ {t} \geq \ c _ {0} | \xi | ^ {2m} , $$
for any $ x \in G $ and all real vectors $ \xi = ( \xi ^ {1} \dots \xi ^ {n)} $. Formulated and proved by L. Gårding [1].
Comments
A sharp form of this inequality has been given by L. Hörmander. See [a1], Sects. 18.1, 18.6, and the literature quoted there.
References
| [1] | L. Gårding, "Dirichlet's problem for linear elliptic partial differential equations" Math. Scand. , 1 (1953) pp. 55–72 |
| [2] | K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1 |
| [a1] | L.V. Hörmander, "The analysis of linear partial differential operators" , 3 , Springer (1985) |
Gårding inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=G%C3%A5rding_inequality&oldid=22479