Difference between revisions of "Asymptotic power series"
(Importing text file) |
(gather refs) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | a0137501.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/A013/A.0103750 Asymptotic power series | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An asymptotic series with respect to the sequence | An asymptotic series with respect to the sequence | ||
− | + | $$ | |
+ | \{ x ^ {-n} \} \ ( x \rightarrow \infty ) | ||
+ | $$ | ||
or with respect to a sequence | or with respect to a sequence | ||
− | + | $$ | |
+ | \{ ( x - x _ {0} ) ^ {n} \} \ ( x \rightarrow x _ {0} ) | ||
+ | $$ | ||
(cf. [[Asymptotic expansion|Asymptotic expansion]] of a function). Asymptotic power series may be added, multiplied, divided and integrated just like convergent power series. | (cf. [[Asymptotic expansion|Asymptotic expansion]] of a function). Asymptotic power series may be added, multiplied, divided and integrated just like convergent power series. | ||
− | Let two functions | + | Let two functions $ f(x) $ |
+ | and $ g(x) $ | ||
+ | have the following asymptotic expansions as $ x \rightarrow \infty $: | ||
− | + | $$ | |
+ | f (x) \sim \sum _ {n = 0 } ^ \infty | ||
+ | |||
+ | \frac{a _ {n} }{x ^ {n} } | ||
+ | ,\ \ | ||
+ | g (x) \sim \sum _ {n = 0 } ^ \infty \frac{b _ {n} }{x^n}. | ||
+ | $$ | ||
Then | Then | ||
Line 17: | Line 41: | ||
1) | 1) | ||
− | + | $$ | |
+ | Af (x) + Bg (x) \sim \sum _ {n =0} ^ \infty \frac{A a _ {n} + B b _ {n} }{x^n} | ||
+ | $$ | ||
− | ( | + | ($A, B $ are constants); |
2) | 2) | ||
− | + | $$ | |
+ | f (x) g (x) \sim \sum _ {n = 0} ^ \infty | ||
+ | |||
+ | \frac{c _ {n} }{x^n } | ||
+ | ; | ||
+ | $$ | ||
3) | 3) | ||
− | + | $$ | |
− | ( | + | \frac{1}{f(x)} |
+ | \sim | ||
+ | \frac{1}{a_0} + \sum _ {n = 1 } ^ \infty \frac{d_n} {x^n} ,\ a _ {0} \neq 0 | ||
+ | $$ | ||
− | + | ($c _ {n} , d _ {n} $ are calculated as for convergent power series); | |
− | + | 4) if the function $ f(x) $ | |
+ | is continuous for $ x > a > 0 $, | ||
+ | then | ||
− | + | $$ | |
+ | \int\limits _ { x } ^ \infty \left ( f (t) - a _ {0} - | ||
+ | \frac{a _ {1} }{t} | ||
+ | \right ) dt | ||
+ | \sim \sum _ {n = 1 } ^ \infty | ||
− | + | \frac{a _ {n+1} }{n x ^ {n} } | |
+ | ; | ||
+ | $$ | ||
+ | |||
+ | 5) an asymptotic power series cannot always be differentiated, but if $ f(x) $ | ||
+ | has a continuous derivative which can be expanded into an asymptotic power series, then | ||
+ | |||
+ | $$ | ||
+ | f ^ { \prime } (x) \sim - \sum _ {n = 2 } ^ \infty | ||
+ | |||
+ | \frac{( n - 1 ) a _ {n-1} }{x^n} . | ||
+ | $$ | ||
Examples of asymptotic power series. | Examples of asymptotic power series. | ||
− | + | $$ | |
− | + | \int\limits _ { x } ^ \infty | |
− | + | \frac{e ^ {x-t} }{t} | |
+ | dt \sim \ | ||
+ | \sum _ {n = 1 } ^ \infty \frac{( -1 ) ^ {n-1} ( n - 1 ) ! }{x^n} ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \sqrt {x } e ^ {-ix} H _ {0} ^ {(1)} (x) \sim \sum _ {n = 0 } ^ \infty | ||
+ | \frac{e ^ {-i \pi / 4 } ( - i ) ^ {n} [ | ||
+ | \Gamma ( n + 1 / 2 ) ] ^ {2} }{2 ^ {n-1/2} \pi ^ {3/2} n ! x ^ {n} } | ||
+ | , | ||
+ | $$ | ||
− | + | where $ {H _ {0} ^ {(1)} } (x) $ | |
+ | is the Hankel function of order zero (cf. [[Hankel functions|Hankel functions]]) (the above asymptotic power series diverge for all $ x $). | ||
− | + | Similar assertions are also valid for functions of a complex variable $ z $ | |
+ | as $ z \rightarrow \infty $ | ||
+ | in a neighbourhood of the point at infinity or inside an angle. For a complex variable 5) takes the following form: If the function $ f(z) $ | ||
+ | is regular in the domain $ D= \{ | z | > a, \alpha < | { \mathop{\rm arg} } z | < \beta \} $ | ||
+ | and if | ||
− | + | $$ | |
+ | f (z) \sim \sum _ {n = 0 } ^ \infty | ||
− | + | \frac{a _ {n} }{z^n} | |
− | + | $$ | |
− | + | uniformly in $ { \mathop{\rm arg} } z $ | |
− | + | as $ | z | \rightarrow \infty $ | |
+ | inside any closed angle contained in $ D $, | ||
+ | then | ||
+ | $$ | ||
+ | f ^ { \prime } (z) \sim - \sum _ {n = 1 } ^ \infty | ||
+ | \frac{na _ {n} }{z ^ {n+1} } | ||
− | + | $$ | |
+ | uniformly in $ \mathop{\rm arg} z $ | ||
+ | as $ | z | \rightarrow \infty $ | ||
+ | in any closed angle contained in D. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR> | ||
+ | </table> |
Latest revision as of 06:35, 14 April 2024
An asymptotic series with respect to the sequence
$$ \{ x ^ {-n} \} \ ( x \rightarrow \infty ) $$
or with respect to a sequence
$$ \{ ( x - x _ {0} ) ^ {n} \} \ ( x \rightarrow x _ {0} ) $$
(cf. Asymptotic expansion of a function). Asymptotic power series may be added, multiplied, divided and integrated just like convergent power series.
Let two functions $ f(x) $ and $ g(x) $ have the following asymptotic expansions as $ x \rightarrow \infty $:
$$ f (x) \sim \sum _ {n = 0 } ^ \infty \frac{a _ {n} }{x ^ {n} } ,\ \ g (x) \sim \sum _ {n = 0 } ^ \infty \frac{b _ {n} }{x^n}. $$
Then
1)
$$ Af (x) + Bg (x) \sim \sum _ {n =0} ^ \infty \frac{A a _ {n} + B b _ {n} }{x^n} $$
($A, B $ are constants);
2)
$$ f (x) g (x) \sim \sum _ {n = 0} ^ \infty \frac{c _ {n} }{x^n } ; $$
3)
$$ \frac{1}{f(x)} \sim \frac{1}{a_0} + \sum _ {n = 1 } ^ \infty \frac{d_n} {x^n} ,\ a _ {0} \neq 0 $$
($c _ {n} , d _ {n} $ are calculated as for convergent power series);
4) if the function $ f(x) $ is continuous for $ x > a > 0 $, then
$$ \int\limits _ { x } ^ \infty \left ( f (t) - a _ {0} - \frac{a _ {1} }{t} \right ) dt \sim \sum _ {n = 1 } ^ \infty \frac{a _ {n+1} }{n x ^ {n} } ; $$
5) an asymptotic power series cannot always be differentiated, but if $ f(x) $ has a continuous derivative which can be expanded into an asymptotic power series, then
$$ f ^ { \prime } (x) \sim - \sum _ {n = 2 } ^ \infty \frac{( n - 1 ) a _ {n-1} }{x^n} . $$
Examples of asymptotic power series.
$$ \int\limits _ { x } ^ \infty \frac{e ^ {x-t} }{t} dt \sim \ \sum _ {n = 1 } ^ \infty \frac{( -1 ) ^ {n-1} ( n - 1 ) ! }{x^n} ; $$
$$ \sqrt {x } e ^ {-ix} H _ {0} ^ {(1)} (x) \sim \sum _ {n = 0 } ^ \infty \frac{e ^ {-i \pi / 4 } ( - i ) ^ {n} [ \Gamma ( n + 1 / 2 ) ] ^ {2} }{2 ^ {n-1/2} \pi ^ {3/2} n ! x ^ {n} } , $$
where $ {H _ {0} ^ {(1)} } (x) $ is the Hankel function of order zero (cf. Hankel functions) (the above asymptotic power series diverge for all $ x $).
Similar assertions are also valid for functions of a complex variable $ z $ as $ z \rightarrow \infty $ in a neighbourhood of the point at infinity or inside an angle. For a complex variable 5) takes the following form: If the function $ f(z) $ is regular in the domain $ D= \{ | z | > a, \alpha < | { \mathop{\rm arg} } z | < \beta \} $ and if
$$ f (z) \sim \sum _ {n = 0 } ^ \infty \frac{a _ {n} }{z^n} $$
uniformly in $ { \mathop{\rm arg} } z $ as $ | z | \rightarrow \infty $ inside any closed angle contained in $ D $, then
$$ f ^ { \prime } (z) \sim - \sum _ {n = 1 } ^ \infty \frac{na _ {n} }{z ^ {n+1} } $$
uniformly in $ \mathop{\rm arg} z $ as $ | z | \rightarrow \infty $ in any closed angle contained in D.
References
[1] | E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965) |
[2] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) |
[a1] | N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981) |
Asymptotic power series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotic_power_series&oldid=11585