Difference between revisions of "Trapezium formula"
(Importing text file) |
(latex details) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0940301.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/T094/T.0904030 Trapezium formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The special case of the [[Newton–Cotes quadrature formula|Newton–Cotes quadrature formula]] in which two nodes are taken: | |
− | + | \begin{equation} \label{eq1} | |
+ | \int\limits _ { a } ^ { b } f ( x) dx \cong \ | ||
+ | { | ||
+ | \frac{b - a }{2} | ||
+ | } [ f ( a) + f ( b)]. | ||
+ | \end{equation} | ||
− | + | If the integrand $ f $ | |
+ | differs strongly from a linear function, then formula \eqref{eq1} is not very exact. In this case the interval $ [ a, b] $ | ||
+ | is divided into $ n $ | ||
+ | subintervals $ [ x _ {i} , x _ {i + 1 } ] $, | ||
+ | $ i = 0 \dots n - 1 $, | ||
+ | of length $ h = ( b- a)/n $, | ||
+ | and for the calculation of the integral over $ [ x _ {i} , x _ {i + 1 } ] $ | ||
+ | one uses the trapezium formula | ||
− | + | $$ | |
+ | \int\limits _ {x _ {i} } ^ { {x _ {i + 1} } } | ||
+ | f ( x) dx \cong \ | ||
+ | { | ||
+ | \frac{h}{2} | ||
+ | } | ||
+ | [ f ( x _ {i} ) + f ( x _ {i + 1 } )]. | ||
+ | $$ | ||
− | + | Summation of the left- and right-hand sides of this approximate equality with respect to $ i $ | |
+ | from 0 to $ n - 1 $ | ||
+ | leads to the composite trapezium formula: | ||
− | + | \begin{equation} \label{eq2} | |
+ | \int\limits _ { a } ^ { b } f ( x) dx \cong \ | ||
+ | h \left [ | ||
+ | { | ||
+ | \frac{f ( a) }{2} | ||
+ | } + | ||
+ | f ( x _ {1} ) + \dots + f ( x _ {n - 1 } ) + | ||
+ | { | ||
+ | \frac{f ( b) }{2} | ||
+ | } | ||
+ | \right ] , | ||
+ | \end{equation} | ||
− | + | where $ x _ {j} = a + jh $, | |
+ | $ j = 0 \dots n $. | ||
+ | The quadrature formula \eqref{eq2} is also called the trapezium formula (without adding the word composite). The algebraic degree of accuracy of the quadrature formula \eqref{eq2}, as well as of \eqref{eq1}, is equal to 1. The quadrature formula \eqref{eq2} is exact for the trigonometric functions | ||
− | + | $$ | |
+ | \cos | ||
+ | \frac{2 \pi }{b - a } | ||
+ | kx,\ \ | ||
+ | \sin | ||
+ | \frac{2 \pi }{b - a } | ||
+ | kx,\ \ | ||
+ | k = 0 \dots n - 1. | ||
+ | $$ | ||
− | + | In the case when $ b - a = 2 \pi $, | |
+ | formula \eqref{eq2} is exact for all trigonometric polynomials of order not exceeding $ n - 1 $; | ||
+ | furthermore, its trigonometric degree of accuracy is equal to $ n - 1 $. | ||
− | + | If the integrand $ f $ | |
+ | is twice-continuously differentiable on $ [ a, b] $, | ||
+ | then the error $ R ( f ) $ | ||
+ | of the quadrature formula \eqref{eq2}, that is, the difference between the integral and the quadrature sum, is given by | ||
+ | $$ | ||
+ | R ( f ) = \ | ||
+ | - { | ||
+ | \frac{b - a }{12} | ||
+ | } | ||
+ | h ^ {2} f ^ { \prime\prime } ( \xi ), | ||
+ | $$ | ||
+ | where $ \xi $ | ||
+ | is a point of $ [ a, b] $. | ||
====Comments==== | ====Comments==== | ||
The complete formula | The complete formula | ||
− | + | $$ | |
− | + | \int\limits_{a}^{b} f(x) dx = h \left [ | |
− | + | \frac{f(a)}{2} | |
+ | + f( x _ {1} ) + \dots + f( x _ {n-1} ) | ||
+ | + \frac{f(b)}{2} \right ] - | ||
+ | \frac{b-a}{12} | ||
+ | h ^ {2} f ^ { \prime\prime } ( \xi ) | ||
+ | $$ | ||
is often referred to as the trapezoidal rule. | is often referred to as the trapezoidal rule. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , Dover, reprint (1974) pp. 95ff</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, "Numerical recipes" , Cambridge Univ. Press (1986) pp. 105ff</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , Dover, reprint (1974) pp. 95ff</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, "Numerical recipes" , Cambridge Univ. Press (1986) pp. 105ff</TD></TR> | ||
+ | </table> |
Latest revision as of 16:30, 29 March 2024
The special case of the Newton–Cotes quadrature formula in which two nodes are taken:
\begin{equation} \label{eq1} \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{2} } [ f ( a) + f ( b)]. \end{equation}
If the integrand $ f $ differs strongly from a linear function, then formula \eqref{eq1} is not very exact. In this case the interval $ [ a, b] $ is divided into $ n $ subintervals $ [ x _ {i} , x _ {i + 1 } ] $, $ i = 0 \dots n - 1 $, of length $ h = ( b- a)/n $, and for the calculation of the integral over $ [ x _ {i} , x _ {i + 1 } ] $ one uses the trapezium formula
$$ \int\limits _ {x _ {i} } ^ { {x _ {i + 1} } } f ( x) dx \cong \ { \frac{h}{2} } [ f ( x _ {i} ) + f ( x _ {i + 1 } )]. $$
Summation of the left- and right-hand sides of this approximate equality with respect to $ i $ from 0 to $ n - 1 $ leads to the composite trapezium formula:
\begin{equation} \label{eq2} \int\limits _ { a } ^ { b } f ( x) dx \cong \ h \left [ { \frac{f ( a) }{2} } + f ( x _ {1} ) + \dots + f ( x _ {n - 1 } ) + { \frac{f ( b) }{2} } \right ] , \end{equation}
where $ x _ {j} = a + jh $, $ j = 0 \dots n $. The quadrature formula \eqref{eq2} is also called the trapezium formula (without adding the word composite). The algebraic degree of accuracy of the quadrature formula \eqref{eq2}, as well as of \eqref{eq1}, is equal to 1. The quadrature formula \eqref{eq2} is exact for the trigonometric functions
$$ \cos \frac{2 \pi }{b - a } kx,\ \ \sin \frac{2 \pi }{b - a } kx,\ \ k = 0 \dots n - 1. $$
In the case when $ b - a = 2 \pi $, formula \eqref{eq2} is exact for all trigonometric polynomials of order not exceeding $ n - 1 $; furthermore, its trigonometric degree of accuracy is equal to $ n - 1 $.
If the integrand $ f $ is twice-continuously differentiable on $ [ a, b] $, then the error $ R ( f ) $ of the quadrature formula \eqref{eq2}, that is, the difference between the integral and the quadrature sum, is given by
$$ R ( f ) = \ - { \frac{b - a }{12} } h ^ {2} f ^ { \prime\prime } ( \xi ), $$
where $ \xi $ is a point of $ [ a, b] $.
Comments
The complete formula
$$ \int\limits_{a}^{b} f(x) dx = h \left [ \frac{f(a)}{2} + f( x _ {1} ) + \dots + f( x _ {n-1} ) + \frac{f(b)}{2} \right ] - \frac{b-a}{12} h ^ {2} f ^ { \prime\prime } ( \xi ) $$
is often referred to as the trapezoidal rule.
References
[a1] | F.B. Hildebrand, "Introduction to numerical analysis" , Dover, reprint (1974) pp. 95ff |
[a2] | W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, "Numerical recipes" , Cambridge Univ. Press (1986) pp. 105ff |
Trapezium formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trapezium_formula&oldid=12696