Difference between revisions of "Group velocity"
(Importing text file) |
m (gather refs) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | A | + | <!-- |
| + | g0453001.png | ||
| + | $#A+1 = 15 n = 0 | ||
| + | $#C+1 = 15 : ~/encyclopedia/old_files/data/G045/G.0405300 Group velocity | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A quantity describing the rate of propagation of a wave process in dispersing media. Let the wave process be described by the [[wave equation]] with variable coefficients: | |
| + | |||
| + | $$ | ||
| + | |||
| + | \frac{1}{c ^ {2} ( z) } | ||
| + | |||
| + | u _ {tt} - u _ {xx} - u _ {zz} = 0, | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | 0 \leq z \langle \infty ,\ - \infty < x < \infty ,\ c ( z) \rangle 0. | ||
| + | $$ | ||
The solutions sought satisfy the conditions | The solutions sought satisfy the conditions | ||
| − | + | $$ | |
| + | \left . u \right | _ {z = 0 } = 0,\ \ | ||
| + | u _ {z \rightarrow \infty } \rightarrow 0 , | ||
| + | $$ | ||
and have the form | and have the form | ||
| − | + | $$ | |
| + | u = \ | ||
| + | e ^ {i \omega ( k) t - ikx } | ||
| + | v ( z). | ||
| + | $$ | ||
| − | The function | + | The function $ v ( z) $ |
| + | should be a non-zero solution of the one-dimensional boundary value problem | ||
| − | + | $$ | |
| + | v ^ {\prime\prime} + | ||
| + | \left ( | ||
| + | k ^ {2} - | ||
| − | + | \frac{\omega ^ {2} }{c ^ {2} ( z) } | |
| − | + | \right ) | |
| + | v = 0; \ \ | ||
| + | \left . v \right | _ {z = 0 } = 0; \ \ | ||
| + | v _ {z \rightarrow \infty } \rightarrow 0. | ||
| + | $$ | ||
| − | + | If, in a certain range of variation of $ k $, | |
| + | there exists a finite number of $ \omega _ {j} ( k), $ | ||
| + | $ k = 1, 2 \dots $ | ||
| + | for which this problem has a non-zero solution $ v _ {j} $, | ||
| + | then the quantities $ V = \omega _ {j} ( k)/k $ | ||
| + | and $ U = d \omega _ {j} /d k $ | ||
| + | are said to be, respectively, the phase and group velocities of the wave | ||
| − | + | $$ | |
| − | + | u _ {j} = \ | |
| − | + | e ^ {i \omega ( k) t - ikx } | |
| − | + | v _ {j} ( z). | |
| − | + | $$ | |
| − | |||
| + | The two velocities are related by the Rayleigh formula: | ||
| + | $$ | ||
| + | U = V - | ||
| − | + | \frac{\lambda dV }{d \lambda } | |
| + | , | ||
| + | $$ | ||
| + | where $ \lambda $ | ||
| + | is the wave-length. | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> L.I. Mandel'shtam, ''Complete works'' , '''5''' , Leningrad (1950) pp. 315–319; 419–425; 439–467 (In Russian)</TD></TR> | ||
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian)</TD></TR> | ||
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Brillouin, "Les tenseur en mécanique et en élasticité" , Masson (1949)</TD></TR></table> | ||
Latest revision as of 12:00, 24 March 2024
A quantity describing the rate of propagation of a wave process in dispersing media. Let the wave process be described by the wave equation with variable coefficients:
$$ \frac{1}{c ^ {2} ( z) } u _ {tt} - u _ {xx} - u _ {zz} = 0, $$
$$ 0 \leq z \langle \infty ,\ - \infty < x < \infty ,\ c ( z) \rangle 0. $$
The solutions sought satisfy the conditions
$$ \left . u \right | _ {z = 0 } = 0,\ \ u _ {z \rightarrow \infty } \rightarrow 0 , $$
and have the form
$$ u = \ e ^ {i \omega ( k) t - ikx } v ( z). $$
The function $ v ( z) $ should be a non-zero solution of the one-dimensional boundary value problem
$$ v ^ {\prime\prime} + \left ( k ^ {2} - \frac{\omega ^ {2} }{c ^ {2} ( z) } \right ) v = 0; \ \ \left . v \right | _ {z = 0 } = 0; \ \ v _ {z \rightarrow \infty } \rightarrow 0. $$
If, in a certain range of variation of $ k $, there exists a finite number of $ \omega _ {j} ( k), $ $ k = 1, 2 \dots $ for which this problem has a non-zero solution $ v _ {j} $, then the quantities $ V = \omega _ {j} ( k)/k $ and $ U = d \omega _ {j} /d k $ are said to be, respectively, the phase and group velocities of the wave
$$ u _ {j} = \ e ^ {i \omega ( k) t - ikx } v _ {j} ( z). $$
The two velocities are related by the Rayleigh formula:
$$ U = V - \frac{\lambda dV }{d \lambda } , $$
where $ \lambda $ is the wave-length.
References
| [1] | L.I. Mandel'shtam, Complete works , 5 , Leningrad (1950) pp. 315–319; 419–425; 439–467 (In Russian) |
| [2] | G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian) |
| [a1] | L. Brillouin, "Les tenseur en mécanique et en élasticité" , Masson (1949) |
Group velocity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Group_velocity&oldid=14648