Difference between revisions of "Hilbert kernel"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(details) |
||
| Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
| − | The kernel of the [[ | + | The kernel of the [[Hilbert singular integral]], i.e. the function |
$$ | $$ | ||
| Line 36: | Line 36: | ||
$ \tau = e ^ {is} $. | $ \tau = e ^ {is} $. | ||
| − | |||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.L. Moiseiwitsch, "Integral equations" , Longman (1977)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B.L. Moiseiwitsch, "Integral equations" , Longman (1977)</TD></TR> | ||
| + | </table> | ||
Latest revision as of 20:27, 18 March 2024
The kernel of the Hilbert singular integral, i.e. the function
$$ \mathop{\rm cotan} { \frac{x - s }{2} } ,\ \ 0 \leq x, s \leq 2 \pi . $$
The following simple relation holds between the Hilbert kernel and the Cauchy kernel in the case of the unit circle:
$$ \frac{dt }{t - \tau } = { \frac{1}{2} } \left ( \mathop{\rm cotan} { \frac{x - s }{2} } + i \right ) dx, $$
where $ t = e ^ {ix} $, $ \tau = e ^ {is} $.
References
| [a1] | B.L. Moiseiwitsch, "Integral equations" , Longman (1977) |
How to Cite This Entry:
Hilbert kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_kernel&oldid=47231
Hilbert kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_kernel&oldid=47231
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article