Difference between revisions of "Auto-regression"
m (link) |
m (tex done) |
||
Line 1: | Line 1: | ||
− | |||
− | + | {{TEX|done}} | |
− | + | A regressive dependence of the values of $X_n$ of a given random sequence $\{X_n : n=0, \pm1, \ldots\}$ on the preceding values of $X_{n-1}, \ldots, X_{n-m}$. A linear auto-regression scheme of order $m$ is defined by a linear [[Regression|regression]] equation between $X_n$ and $X_{n-k}$, $k=1,\ldots,m$, i.e. | |
− | where | + | \begin{equation} |
+ | \tag{*} | ||
+ | X_n = \beta_1 X_{n-1} + \dots + \beta_m X_{n-m} + \epsilon_n , | ||
+ | \end{equation} | ||
+ | |||
+ | where $\beta_1, \ldots, \beta_m$ are constants and the random variables $\epsilon_n$ are identically distributed with average zero, variance $\sigma^2$ and are uncorrelated (sometimes they are assumed to be independent). An auto-regression scheme is a useful stochastic model for the description of certain [[Time series|time series]] (the concept of a linear auto-regression scheme was first introduced by [[Yule, George Udny|G. Yule]] in 1921) in order to analyze time series describing a system which is oscillating under the effect of internal forces and random external shocks. The auto-regression scheme (*) may be regarded as a stochastic process of a special type: an [[Auto-regressive process|auto-regressive process]]. |
Latest revision as of 01:22, 15 February 2024
A regressive dependence of the values of $X_n$ of a given random sequence $\{X_n : n=0, \pm1, \ldots\}$ on the preceding values of $X_{n-1}, \ldots, X_{n-m}$. A linear auto-regression scheme of order $m$ is defined by a linear regression equation between $X_n$ and $X_{n-k}$, $k=1,\ldots,m$, i.e.
\begin{equation} \tag{*} X_n = \beta_1 X_{n-1} + \dots + \beta_m X_{n-m} + \epsilon_n , \end{equation}
where $\beta_1, \ldots, \beta_m$ are constants and the random variables $\epsilon_n$ are identically distributed with average zero, variance $\sigma^2$ and are uncorrelated (sometimes they are assumed to be independent). An auto-regression scheme is a useful stochastic model for the description of certain time series (the concept of a linear auto-regression scheme was first introduced by G. Yule in 1921) in order to analyze time series describing a system which is oscillating under the effect of internal forces and random external shocks. The auto-regression scheme (*) may be regarded as a stochastic process of a special type: an auto-regressive process.
Auto-regression. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Auto-regression&oldid=52903