|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A [[Bordism|bordism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460102.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460103.png" /> is a compact manifold whose boundary is the disjoint union of closed manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460104.png" /> which are deformation retracts (cf. [[Deformation retract|Deformation retract]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460105.png" />. The simplest example is the trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460107.png" />-cobordism
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460108.png" /></td> </tr></table>
| + | Out of 1 formulas, 1 were replaced by TEX code.--> |
| | | |
− | Two manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h0460109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601010.png" /> are said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601012.png" />-cobordant if there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601013.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601014.png" /> joining them.
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601015.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601016.png" />-cobordism such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601019.png" /> are simply-connected differentiable (or piecewise-linear) manifolds and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601020.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601021.png" /> is diffeomorphic (or piecewise-linearly isomorphic) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601022.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601023.png" /> and therefore <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601024.png" /> (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601026.png" />-cobordism theorem [[#References|[4]]]). Thus, proving the isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601027.png" /> reduces to providing an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601028.png" />-cobordism, which can be achieved by methods of algebraic topology. For this reason, this theorem is basic in passing from the homotopy classification of simply-connected manifolds to their classification up to a diffeomorphism (or a piecewise-linear isomorphism). Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601030.png" />, is a compact differentiable manifold with simply-connected boundary, then it is diffeomorphic to the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601031.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601033.png" />, is a manifold that is homotopy equivalent to the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601034.png" />, then it is homeomorphic (and even piecewise-linearly isomorphic) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601035.png" /> (the generalized Poincaré conjecture).
| + | A [[Bordism|bordism]] $ ( W; M _ {0} , M _ {1} ) $, |
| + | where $ W $ |
| + | is a compact manifold whose boundary is the disjoint union of closed manifolds $ M _ {0} , M _ {1} $ |
| + | which are deformation retracts (cf. [[Deformation retract|Deformation retract]]) of $ W $. |
| + | The simplest example is the trivial $ h $- |
| + | cobordism |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601036.png" />-cobordism theorem allows one to classify the differentiable structures on the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601038.png" /> [[#References|[6]]], and also on the homotopy type of an arbitrary closed simply-connected manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601040.png" /> [[#References|[1]]].
| + | $$ |
| + | ( M \times [ 0, 1]; M \times \{ 0 \} , M \times \{ 1 \} ). |
| + | $$ |
| | | |
− | In the case of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601041.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601042.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601043.png" /> there is, in general, no diffeomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601044.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601045.png" />.
| + | Two manifolds $ M _ {0} $ |
| + | and $ M _ {1} $ |
| + | are said to be $ h $- |
| + | cobordant if there is an $ h $- |
| + | cobordism $ W $ |
| + | joining them. |
| | | |
− | All <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601046.png" />-cobordisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601047.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601049.png" /> fixed are classified by a certain Abelian group, namely the [[Whitehead group|Whitehead group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601050.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601051.png" />. Corresponding to a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601052.png" />-cobordism is an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601053.png" /> that is an invariant of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601054.png" />; it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601055.png" /> and is called the torsion (sometimes the [[Whitehead torsion|Whitehead torsion]]) of the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601057.png" />-cobordism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601058.png" /> (or, equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601059.png" />), then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601060.png" />-cobordism is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601062.png" />-cobordism. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601063.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601064.png" />-cobordism such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601065.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601066.png" /> vanishes if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601067.png" /> (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601069.png" />-cobordism theorem). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601070.png" />-cobordism theorem is a special case of this theorem in view of the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601071.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601072.png" />-cobordism theorem is also true for topological manifolds [[#References|[9]]].
| + | If $ ( W; M _ {0} , M _ {1} ) $ |
| + | is an $ h $- |
| + | cobordism such that $ W $, |
| + | $ M _ {0} $, |
| + | $ M _ {1} $ |
| + | are simply-connected differentiable (or piecewise-linear) manifolds and $ \mathop{\rm dim} W \geq 6 $, |
| + | then $ W $ |
| + | is diffeomorphic (or piecewise-linearly isomorphic) to $ M _ {0} \times [ 0, 1] $: |
| + | $ W \approx M _ {0} \times [ 0, 1] $ |
| + | and therefore $ M _ {0} \approx M _ {1} $( |
| + | the $ h $- |
| + | cobordism theorem [[#References|[4]]]). Thus, proving the isomorphism $ M _ {0} \approx M _ {1} $ |
| + | reduces to providing an $ h $- |
| + | cobordism, which can be achieved by methods of algebraic topology. For this reason, this theorem is basic in passing from the homotopy classification of simply-connected manifolds to their classification up to a diffeomorphism (or a piecewise-linear isomorphism). Thus, if $ W ^ {n} $, |
| + | $ n \geq 6 $, |
| + | is a compact differentiable manifold with simply-connected boundary, then it is diffeomorphic to the disc $ D ^ {n} $. |
| + | If $ M ^ {n} $, |
| + | $ n \geq 5 $, |
| + | is a manifold that is homotopy equivalent to the sphere $ S ^ {n} $, |
| + | then it is homeomorphic (and even piecewise-linearly isomorphic) to $ S ^ {n} $( |
| + | the generalized Poincaré conjecture). |
| | | |
− | For an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601073.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601074.png" />, the torsion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601075.png" /> is defined along with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601076.png" />; if the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601077.png" />-cobordism is orientable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601078.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601079.png" /> and the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601080.png" /> is conjugate to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601081.png" /> in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601082.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601083.png" /> is finite and Abelian, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601084.png" />.
| + | The $ h $- |
| + | cobordism theorem allows one to classify the differentiable structures on the sphere $ S ^ {n} $, |
| + | $ n \geq 5 $[[#References|[6]]], and also on the homotopy type of an arbitrary closed simply-connected manifold $ M ^ {n} $, |
| + | $ n \geq 5 $[[#References|[1]]]. |
| | | |
− | If two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601085.png" />-cobordisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601087.png" /> are glued along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601088.png" /> to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601089.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601090.png" />, then
| + | In the case of an $ h $- |
| + | cobordism $ ( W; M _ {0} , M _ {1} ) $ |
| + | with $ \pi _ {1} W \neq \{ 1 \} $ |
| + | there is, in general, no diffeomorphism from $ W $ |
| + | to $ M _ {0} \times [ 0, 1] $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601091.png" /></td> </tr></table>
| + | All $ h $- |
| + | cobordisms $ ( W; M _ {0} , M _ {1} ) $ |
| + | with $ \mathop{\rm dim} W \geq 6 $ |
| + | and $ M _ {0} $ |
| + | fixed are classified by a certain Abelian group, namely the [[Whitehead group|Whitehead group]] $ \mathop{\rm Wh} \pi _ {1} $ |
| + | of the group $ \pi _ {1} M _ {0} $. |
| + | Corresponding to a given $ h $- |
| + | cobordism is an element of $ \mathop{\rm Wh} \pi _ {1} $ |
| + | that is an invariant of the pair $ ( W, M _ {0} ) $; |
| + | it is denoted by $ \tau ( W, M _ {0} ) $ |
| + | and is called the torsion (sometimes the [[Whitehead torsion|Whitehead torsion]]) of the given $ h $- |
| + | cobordism. If $ \tau ( W, M _ {0} ) = 0 $( |
| + | or, equivalently, $ \tau ( W, M _ {1} ) = 0 $), |
| + | then the $ h $- |
| + | cobordism is called an $ s $- |
| + | cobordism. If $ ( W; M _ {0} , M _ {1} ) $ |
| + | is an $ h $- |
| + | cobordism such that $ \mathop{\rm dim} W \geq 6 $, |
| + | then $ \tau ( W, M _ {0} ) $ |
| + | vanishes if and only if $ W \approx M _ {0} \times [ 0, 1] $( |
| + | the $ s $- |
| + | cobordism theorem). The $ h $- |
| + | cobordism theorem is a special case of this theorem in view of the fact that $ \mathop{\rm Wh} \{ 1 \} = 0 $. |
| + | The $ s $- |
| + | cobordism theorem is also true for topological manifolds [[#References|[9]]]. |
| | | |
− | If two copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601092.png" /> are glued along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601093.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601094.png" /> is odd and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601095.png" />, then one obtains an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601096.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601097.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601098.png" /> when there is no diffeomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h04601099.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010100.png" />, that is, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010101.png" /> does not imply that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010102.png" />-cobordism connecting them is trivial.
| + | For an $ h $- |
| + | cobordism $ ( W; M _ {0} , M _ {1} ) $, |
| + | the torsion $ \tau ( W, M _ {1} ) $ |
| + | is defined along with $ \tau ( W, M _ {0} ) $; |
| + | if the given $ h $- |
| + | cobordism is orientable, then $ \tau ( W, M _ {0} ) = (- 1) ^ {n - 1 } \tau ^ {*} ( W, M _ {1} ) $, |
| + | where $ n = \mathop{\rm dim} W $ |
| + | and the element $ \tau ^ {*} $ |
| + | is conjugate to $ \tau $ |
| + | in the group $ \mathop{\rm Wh} \pi _ {1} $. |
| + | In particular, if $ \pi _ {1} $ |
| + | is finite and Abelian, $ \tau ^ {*} = \tau $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010103.png" /> is a closed connected manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010104.png" />, then there exists for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010105.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010106.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010107.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010108.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010110.png" /> (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010111.png" />) have the same torsion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010112.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010113.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010114.png" />. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010115.png" /> is even and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010116.png" /> is finite, there is a finite set of distinct manifolds that are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010117.png" />-cobordant with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010118.png" />. This is not the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010119.png" /> is odd. | + | If two $ h $- |
| + | cobordisms $ ( W; M _ {0} , M _ {1} ) $ |
| + | and $ ( W ^ \prime ; M _ {1} , M _ {2} ) $ |
| + | are glued along $ M _ {1} $ |
| + | to the $ h $- |
| + | cobordism $ ( W \cup W ^ \prime ; M _ {0} , M _ {1} ) $, |
| + | then |
| | | |
− | If two homotopy-equivalent manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010120.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010121.png" /> are imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010122.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010123.png" /> sufficiently large, and their normal bundles are trivial, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010124.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010125.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010126.png" />-cobordant. If, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010127.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010128.png" /> are of the same [[Simple homotopy type|simple homotopy type]], that is, if the torsion of this homotopy equivalence vanishes, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010129.png" />.
| + | $$ |
| + | \tau ( W \cup W ^ \prime , M _ {0} ) = \ |
| + | \tau ( W, M _ {0} ) + \tau ( W ^ \prime , M _ {1} ). |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010130.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010131.png" />-cobordism and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010132.png" /> is a closed manifold, then there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010133.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010134.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010135.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010136.png" /> is the [[Euler characteristic|Euler characteristic]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010137.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010138.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010139.png" />, then | + | If two copies of $ W $ |
| + | are glued along $ M _ {1} $, |
| + | where $ \mathop{\rm dim} W $ |
| + | is odd and $ \pi _ {1} = \mathbf Z _ {5} $, |
| + | then one obtains an $ h $- |
| + | cobordism $ ( 2W; M _ {0} , M _ {0} ^ \prime ) $, |
| + | where $ M _ {0} = M _ {0} ^ \prime $ |
| + | when there is no diffeomorphism from $ W $ |
| + | to $ M _ {0} \times [ 0, 1] $, |
| + | that is, when $ M _ {0} \approx M _ {1} $ |
| + | does not imply that the $ h $- |
| + | cobordism connecting them is trivial. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010140.png" /></td> </tr></table>
| + | If $ M _ {0} $ |
| + | is a closed connected manifold and $ \mathop{\rm dim} M _ {0} \geq 5 $, |
| + | then there exists for any $ \tau \in \mathop{\rm Wh} \pi _ {1} M _ {0} $ |
| + | an $ h $- |
| + | cobordism $ ( W; M _ {0} , M _ {1} ) $ |
| + | with $ \tau ( W, M _ {0} ) = \tau $. |
| + | If $ ( W; M _ {0} , M _ {1} ) $ |
| + | and $ ( W ^ \prime ; M _ {0} , M _ {1} ^ \prime ) $( |
| + | with $ \mathop{\rm dim} W \geq 6 $) |
| + | have the same torsion $ \tau ( W, M _ {0} ) = \tau ( W ^ \prime , M _ {0} ) $, |
| + | then $ W \approx W ^ \prime $ |
| + | relative to $ M _ {0} $. |
| + | When $ \mathop{\rm dim} M _ {0} $ |
| + | is even and $ \pi _ {1} M _ {0} $ |
| + | is finite, there is a finite set of distinct manifolds that are $ h $- |
| + | cobordant with $ M _ {0} $. |
| + | This is not the case when $ \mathop{\rm dim} M _ {0} $ |
| + | is odd. |
| | | |
− | In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010141.png" />; furthermore, two closed manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010142.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010143.png" /> of the same dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010144.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010145.png" />-cobordant if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010146.png" />.
| + | If two homotopy-equivalent manifolds $ M _ {1} $ |
| + | and $ M _ {2} $ |
| + | are imbedded in $ \mathbf R ^ {N} $, |
| + | with $ N $ |
| + | sufficiently large, and their normal bundles are trivial, then $ M _ {1} \times S ^ {N} $ |
| + | and $ M _ {2} \times S ^ {N} $ |
| + | are $ h $- |
| + | cobordant. If, moreover, $ M _ {1} $ |
| + | and $ M _ {2} $ |
| + | are of the same [[Simple homotopy type|simple homotopy type]], that is, if the torsion of this homotopy equivalence vanishes, then $ M _ {1} \times S ^ {N} \approx M _ {2} \times S ^ {N} $. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010147.png" />-cobordism structure has not been completely elucidated for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010148.png" /> (1978). Thus there is the following negative result [[#References|[8]]]: There exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010149.png" />-cobordism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010150.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010151.png" /> is the four-dimensional torus, for which there is no diffeomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010152.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010153.png" />; since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010154.png" />, this means that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010155.png" />-cobordism theorem fails for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010156.png" />.
| + | If $ ( W; M _ {0} , M _ {1} ) $ |
| + | is an $ h $- |
| + | cobordism and $ P $ |
| + | is a closed manifold, then there is an $ h $- |
| + | cobordism $ ( W \times P; M _ {0} \times P, M _ {1} \times P) $ |
| + | with $ \tau ( W \times P, M _ {0} \times P) = \tau ( W, M _ {0} ) \chi ( P) $, |
| + | where $ \chi ( P) $ |
| + | is the [[Euler characteristic|Euler characteristic]] of $ P $. |
| + | If $ \mathop{\rm dim} W \geq 5 $ |
| + | and $ P = S ^ {1} $, |
| + | then |
| | | |
− | ====References====
| + | $$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.P. Novikov, "Homotopy-equivalent smooth manifolds I" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' : 2 (1964) pp. 365–474 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "Lectures on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046010/h046010157.png" />-cobordism theorem" , Princeton Univ. Press (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Milnor, "Whitehead torsion" ''Bull. Amer. Math. Soc.'' , '''72''' (1966) pp. 358–462</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Smale, "On the structure of manifolds" ''Amer. J. Math.'' , '''84''' (1962) pp. 387–399</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> J. Milnor, "Sommes des variétés différentiables et structures différentiables des sphères" ''Bull. Soc. Math. France'' , '''87''' (1959) pp. 439–444</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> M. Kervaire, J. Milnor, "Groups of homotopy spheres I" ''Ann. of Math. (2)'' , '''77''' (1963) pp. 504–537</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> B. Mazur, "Relative neighbourhoods and the theorems of Smale" ''Ann. of Math.'' , '''77''' (1963) pp. 232–249</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L.C. Siebenmann, "Disruption of low-dimensional handlebody theory by Rohlin's theorem" J.C. Cantrell (ed.) C.H. Edwards jr. (ed.) , ''Topology of manifolds'' , Markham (1969) pp. 57–76</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> R. Kirby, L. Siebenmann, "On the triangulation of manifolds and the Hauptvermutung" ''Bull. Amer. Math. Soc.'' , '''75''' (1969) pp. 742–749</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> M.A. Kervaire, "Le théorème de Barden–Mazur–Stallings" M.A. Kervaire (ed.) G. de Rham (ed.) S. Maumary (ed.) , ''Torsion et type simple d'homotopie'' , ''Lect. notes in math.'' , '''48''' , Springer (1967) pp. 83–95</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> R. Thom, "Les classes caractéristiques de Pontryagin des variétés triangulées" , ''Symp. Internac. Topol. Algebr.'' , Univ. Nac. Aut. Mexico & UNESCO (1958) pp. 54–67</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> C.P. Rourke, B.J. Sanderson, "Introduction to piecewise-linear topology" , Springer (1972)</TD></TR></table>
| + | W \times S ^ {1} \approx \ |
| + | M _ {0} \times S ^ {1} \times [ 0, 1] \approx \ |
| + | M _ {1} \times S ^ {1} \times [ 0, 1]. |
| + | $$ |
| + | |
| + | In particular, $ M _ {0} \times S ^ {1} \approx M _ {1} \times S ^ {1} $; |
| + | furthermore, two closed manifolds $ M _ {0} $ |
| + | and $ M _ {1} $ |
| + | of the same dimension $ \geq 5 $ |
| + | are $ h $- |
| + | cobordant if and only if $ M _ {0} \times \mathbf R ^ {1} \approx M _ {1} \times \mathbf R ^ {1} $. |
| | | |
| + | The $ h $- |
| + | cobordism structure has not been completely elucidated for $ n < 6 $( |
| + | 1978). Thus there is the following negative result [[#References|[8]]]: There exists an $ h $- |
| + | cobordism $ ( W; T ^ {4} , T ^ {4} ) $, |
| + | where $ T ^ {4} $ |
| + | is the four-dimensional torus, for which there is no diffeomorphism from $ W $ |
| + | to $ T ^ {4} \times [ 0, 1] $; |
| + | since $ \mathop{\rm Wh} \pi _ {1} T ^ {4} = 0 $, |
| + | this means that the $ s $- |
| + | cobordism theorem fails for $ n = 5 $. |
| | | |
| + | ====References==== |
| + | <table><tr><td valign="top">[1]</td> <td valign="top"> S.P. Novikov, "Homotopy-equivalent smooth manifolds I" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''28''' : 2 (1964) pp. 365–474 (In Russian)</td></tr><tr><td valign="top">[2]</td> <td valign="top"> J. Milnor, "Lectures on the $h$-cobordism theorem" , Princeton Univ. Press (1965)</td></tr><tr><td valign="top">[3]</td> <td valign="top"> J. Milnor, "Whitehead torsion" ''Bull. Amer. Math. Soc.'' , '''72''' (1966) pp. 358–462</td></tr><tr><td valign="top">[4]</td> <td valign="top"> S. Smale, "On the structure of manifolds" ''Amer. J. Math.'' , '''84''' (1962) pp. 387–399</td></tr><tr><td valign="top">[5]</td> <td valign="top"> J. Milnor, "Sommes des variétés différentiables et structures différentiables des sphères" ''Bull. Soc. Math. France'' , '''87''' (1959) pp. 439–444</td></tr><tr><td valign="top">[6]</td> <td valign="top"> M. Kervaire, J. Milnor, "Groups of homotopy spheres I" ''Ann. of Math. (2)'' , '''77''' (1963) pp. 504–537</td></tr><tr><td valign="top">[7]</td> <td valign="top"> B. Mazur, "Relative neighbourhoods and the theorems of Smale" ''Ann. of Math.'' , '''77''' (1963) pp. 232–249</td></tr><tr><td valign="top">[8]</td> <td valign="top"> L.C. Siebenmann, "Disruption of low-dimensional handlebody theory by Rohlin's theorem" J.C. Cantrell (ed.) C.H. Edwards jr. (ed.) , ''Topology of manifolds'' , Markham (1969) pp. 57–76</td></tr><tr><td valign="top">[9]</td> <td valign="top"> R. Kirby, L. Siebenmann, "On the triangulation of manifolds and the Hauptvermutung" ''Bull. Amer. Math. Soc.'' , '''75''' (1969) pp. 742–749</td></tr><tr><td valign="top">[10]</td> <td valign="top"> M.A. Kervaire, "Le théorème de Barden–Mazur–Stallings" M.A. Kervaire (ed.) G. de Rham (ed.) S. Maumary (ed.) , ''Torsion et type simple d'homotopie'' , ''Lect. notes in math.'' , '''48''' , Springer (1967) pp. 83–95</td></tr><tr><td valign="top">[11]</td> <td valign="top"> R. Thom, "Les classes caractéristiques de Pontryagin des variétés triangulées" , ''Symp. Internac. Topol. Algebr.'' , Univ. Nac. Aut. Mexico & UNESCO (1958) pp. 54–67</td></tr><tr><td valign="top">[12]</td> <td valign="top"> C.P. Rourke, B.J. Sanderson, "Introduction to piecewise-linear topology" , Springer (1972)</td></tr></table> |
| | | |
| ====Comments==== | | ====Comments==== |
Line 42: |
Line 199: |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Smale, "Generalized Poincaré's conjecture in dimensions greater than four" ''Ann. of Math. (2)'' , '''74''' (1961) pp. 391–406</TD></TR></table> | + | <table> |
| + | <tr><td valign="top">[a1]</td> <td valign="top"> S. Smale, "Generalized Poincaré's conjecture in dimensions greater than four" ''Ann. of Math. (2)'' , '''74''' (1961) pp. 391–406</td></tr> |
| + | </table> |
A bordism $ ( W; M _ {0} , M _ {1} ) $,
where $ W $
is a compact manifold whose boundary is the disjoint union of closed manifolds $ M _ {0} , M _ {1} $
which are deformation retracts (cf. Deformation retract) of $ W $.
The simplest example is the trivial $ h $-
cobordism
$$
( M \times [ 0, 1]; M \times \{ 0 \} , M \times \{ 1 \} ).
$$
Two manifolds $ M _ {0} $
and $ M _ {1} $
are said to be $ h $-
cobordant if there is an $ h $-
cobordism $ W $
joining them.
If $ ( W; M _ {0} , M _ {1} ) $
is an $ h $-
cobordism such that $ W $,
$ M _ {0} $,
$ M _ {1} $
are simply-connected differentiable (or piecewise-linear) manifolds and $ \mathop{\rm dim} W \geq 6 $,
then $ W $
is diffeomorphic (or piecewise-linearly isomorphic) to $ M _ {0} \times [ 0, 1] $:
$ W \approx M _ {0} \times [ 0, 1] $
and therefore $ M _ {0} \approx M _ {1} $(
the $ h $-
cobordism theorem [4]). Thus, proving the isomorphism $ M _ {0} \approx M _ {1} $
reduces to providing an $ h $-
cobordism, which can be achieved by methods of algebraic topology. For this reason, this theorem is basic in passing from the homotopy classification of simply-connected manifolds to their classification up to a diffeomorphism (or a piecewise-linear isomorphism). Thus, if $ W ^ {n} $,
$ n \geq 6 $,
is a compact differentiable manifold with simply-connected boundary, then it is diffeomorphic to the disc $ D ^ {n} $.
If $ M ^ {n} $,
$ n \geq 5 $,
is a manifold that is homotopy equivalent to the sphere $ S ^ {n} $,
then it is homeomorphic (and even piecewise-linearly isomorphic) to $ S ^ {n} $(
the generalized Poincaré conjecture).
The $ h $-
cobordism theorem allows one to classify the differentiable structures on the sphere $ S ^ {n} $,
$ n \geq 5 $[6], and also on the homotopy type of an arbitrary closed simply-connected manifold $ M ^ {n} $,
$ n \geq 5 $[1].
In the case of an $ h $-
cobordism $ ( W; M _ {0} , M _ {1} ) $
with $ \pi _ {1} W \neq \{ 1 \} $
there is, in general, no diffeomorphism from $ W $
to $ M _ {0} \times [ 0, 1] $.
All $ h $-
cobordisms $ ( W; M _ {0} , M _ {1} ) $
with $ \mathop{\rm dim} W \geq 6 $
and $ M _ {0} $
fixed are classified by a certain Abelian group, namely the Whitehead group $ \mathop{\rm Wh} \pi _ {1} $
of the group $ \pi _ {1} M _ {0} $.
Corresponding to a given $ h $-
cobordism is an element of $ \mathop{\rm Wh} \pi _ {1} $
that is an invariant of the pair $ ( W, M _ {0} ) $;
it is denoted by $ \tau ( W, M _ {0} ) $
and is called the torsion (sometimes the Whitehead torsion) of the given $ h $-
cobordism. If $ \tau ( W, M _ {0} ) = 0 $(
or, equivalently, $ \tau ( W, M _ {1} ) = 0 $),
then the $ h $-
cobordism is called an $ s $-
cobordism. If $ ( W; M _ {0} , M _ {1} ) $
is an $ h $-
cobordism such that $ \mathop{\rm dim} W \geq 6 $,
then $ \tau ( W, M _ {0} ) $
vanishes if and only if $ W \approx M _ {0} \times [ 0, 1] $(
the $ s $-
cobordism theorem). The $ h $-
cobordism theorem is a special case of this theorem in view of the fact that $ \mathop{\rm Wh} \{ 1 \} = 0 $.
The $ s $-
cobordism theorem is also true for topological manifolds [9].
For an $ h $-
cobordism $ ( W; M _ {0} , M _ {1} ) $,
the torsion $ \tau ( W, M _ {1} ) $
is defined along with $ \tau ( W, M _ {0} ) $;
if the given $ h $-
cobordism is orientable, then $ \tau ( W, M _ {0} ) = (- 1) ^ {n - 1 } \tau ^ {*} ( W, M _ {1} ) $,
where $ n = \mathop{\rm dim} W $
and the element $ \tau ^ {*} $
is conjugate to $ \tau $
in the group $ \mathop{\rm Wh} \pi _ {1} $.
In particular, if $ \pi _ {1} $
is finite and Abelian, $ \tau ^ {*} = \tau $.
If two $ h $-
cobordisms $ ( W; M _ {0} , M _ {1} ) $
and $ ( W ^ \prime ; M _ {1} , M _ {2} ) $
are glued along $ M _ {1} $
to the $ h $-
cobordism $ ( W \cup W ^ \prime ; M _ {0} , M _ {1} ) $,
then
$$
\tau ( W \cup W ^ \prime , M _ {0} ) = \
\tau ( W, M _ {0} ) + \tau ( W ^ \prime , M _ {1} ).
$$
If two copies of $ W $
are glued along $ M _ {1} $,
where $ \mathop{\rm dim} W $
is odd and $ \pi _ {1} = \mathbf Z _ {5} $,
then one obtains an $ h $-
cobordism $ ( 2W; M _ {0} , M _ {0} ^ \prime ) $,
where $ M _ {0} = M _ {0} ^ \prime $
when there is no diffeomorphism from $ W $
to $ M _ {0} \times [ 0, 1] $,
that is, when $ M _ {0} \approx M _ {1} $
does not imply that the $ h $-
cobordism connecting them is trivial.
If $ M _ {0} $
is a closed connected manifold and $ \mathop{\rm dim} M _ {0} \geq 5 $,
then there exists for any $ \tau \in \mathop{\rm Wh} \pi _ {1} M _ {0} $
an $ h $-
cobordism $ ( W; M _ {0} , M _ {1} ) $
with $ \tau ( W, M _ {0} ) = \tau $.
If $ ( W; M _ {0} , M _ {1} ) $
and $ ( W ^ \prime ; M _ {0} , M _ {1} ^ \prime ) $(
with $ \mathop{\rm dim} W \geq 6 $)
have the same torsion $ \tau ( W, M _ {0} ) = \tau ( W ^ \prime , M _ {0} ) $,
then $ W \approx W ^ \prime $
relative to $ M _ {0} $.
When $ \mathop{\rm dim} M _ {0} $
is even and $ \pi _ {1} M _ {0} $
is finite, there is a finite set of distinct manifolds that are $ h $-
cobordant with $ M _ {0} $.
This is not the case when $ \mathop{\rm dim} M _ {0} $
is odd.
If two homotopy-equivalent manifolds $ M _ {1} $
and $ M _ {2} $
are imbedded in $ \mathbf R ^ {N} $,
with $ N $
sufficiently large, and their normal bundles are trivial, then $ M _ {1} \times S ^ {N} $
and $ M _ {2} \times S ^ {N} $
are $ h $-
cobordant. If, moreover, $ M _ {1} $
and $ M _ {2} $
are of the same simple homotopy type, that is, if the torsion of this homotopy equivalence vanishes, then $ M _ {1} \times S ^ {N} \approx M _ {2} \times S ^ {N} $.
If $ ( W; M _ {0} , M _ {1} ) $
is an $ h $-
cobordism and $ P $
is a closed manifold, then there is an $ h $-
cobordism $ ( W \times P; M _ {0} \times P, M _ {1} \times P) $
with $ \tau ( W \times P, M _ {0} \times P) = \tau ( W, M _ {0} ) \chi ( P) $,
where $ \chi ( P) $
is the Euler characteristic of $ P $.
If $ \mathop{\rm dim} W \geq 5 $
and $ P = S ^ {1} $,
then
$$
W \times S ^ {1} \approx \
M _ {0} \times S ^ {1} \times [ 0, 1] \approx \
M _ {1} \times S ^ {1} \times [ 0, 1].
$$
In particular, $ M _ {0} \times S ^ {1} \approx M _ {1} \times S ^ {1} $;
furthermore, two closed manifolds $ M _ {0} $
and $ M _ {1} $
of the same dimension $ \geq 5 $
are $ h $-
cobordant if and only if $ M _ {0} \times \mathbf R ^ {1} \approx M _ {1} \times \mathbf R ^ {1} $.
The $ h $-
cobordism structure has not been completely elucidated for $ n < 6 $(
1978). Thus there is the following negative result [8]: There exists an $ h $-
cobordism $ ( W; T ^ {4} , T ^ {4} ) $,
where $ T ^ {4} $
is the four-dimensional torus, for which there is no diffeomorphism from $ W $
to $ T ^ {4} \times [ 0, 1] $;
since $ \mathop{\rm Wh} \pi _ {1} T ^ {4} = 0 $,
this means that the $ s $-
cobordism theorem fails for $ n = 5 $.
References
[1] | S.P. Novikov, "Homotopy-equivalent smooth manifolds I" Izv. Akad. Nauk SSSR Ser. Mat. , 28 : 2 (1964) pp. 365–474 (In Russian) |
[2] | J. Milnor, "Lectures on the $h$-cobordism theorem" , Princeton Univ. Press (1965) |
[3] | J. Milnor, "Whitehead torsion" Bull. Amer. Math. Soc. , 72 (1966) pp. 358–462 |
[4] | S. Smale, "On the structure of manifolds" Amer. J. Math. , 84 (1962) pp. 387–399 |
[5] | J. Milnor, "Sommes des variétés différentiables et structures différentiables des sphères" Bull. Soc. Math. France , 87 (1959) pp. 439–444 |
[6] | M. Kervaire, J. Milnor, "Groups of homotopy spheres I" Ann. of Math. (2) , 77 (1963) pp. 504–537 |
[7] | B. Mazur, "Relative neighbourhoods and the theorems of Smale" Ann. of Math. , 77 (1963) pp. 232–249 |
[8] | L.C. Siebenmann, "Disruption of low-dimensional handlebody theory by Rohlin's theorem" J.C. Cantrell (ed.) C.H. Edwards jr. (ed.) , Topology of manifolds , Markham (1969) pp. 57–76 |
[9] | R. Kirby, L. Siebenmann, "On the triangulation of manifolds and the Hauptvermutung" Bull. Amer. Math. Soc. , 75 (1969) pp. 742–749 |
[10] | M.A. Kervaire, "Le théorème de Barden–Mazur–Stallings" M.A. Kervaire (ed.) G. de Rham (ed.) S. Maumary (ed.) , Torsion et type simple d'homotopie , Lect. notes in math. , 48 , Springer (1967) pp. 83–95 |
[11] | R. Thom, "Les classes caractéristiques de Pontryagin des variétés triangulées" , Symp. Internac. Topol. Algebr. , Univ. Nac. Aut. Mexico & UNESCO (1958) pp. 54–67 |
[12] | C.P. Rourke, B.J. Sanderson, "Introduction to piecewise-linear topology" , Springer (1972) |
For the generalized Poincaré conjecture see also [a1].
References
[a1] | S. Smale, "Generalized Poincaré's conjecture in dimensions greater than four" Ann. of Math. (2) , 74 (1961) pp. 391–406 |