|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | q0761901.png |
| + | $#A+1 = 82 n = 0 |
| + | $#C+1 = 82 : ~/encyclopedia/old_files/data/Q076/Q.0706190 Quadrature formula of highest algebraic accuracy |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A formula of the type | | A formula of the type |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ \tag{1 } |
| + | \int\limits _ { a } ^ { b } |
| + | p ( x) f ( x) dx \approx \ |
| + | \sum _ {j = 1 } ^ { N } C _ {j} f ( x _ {j} ), |
| + | $$ |
| | | |
− | where the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761902.png" /> is assumed to be non-negative on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761903.png" />, where the integrals | + | where the weight function $ p ( x) $ |
| + | is assumed to be non-negative on $ [ a, b] $, |
| + | where the integrals |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761904.png" /></td> </tr></table>
| + | $$ |
| + | \mu _ {k} = \ |
| + | \int\limits _ { a } ^ { b } p ( x) x ^ {k} dx,\ \ |
| + | k = 0, 1 \dots |
| + | $$ |
| | | |
− | exist and where, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761905.png" />. The nodes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761906.png" /> of formula (1) are the roots of a polynomial of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761907.png" /> orthogonal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761908.png" /> with the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q0761909.png" />, and the weights are defined by the condition that (1) be an interpolatory formula. A quadrature formula of this type has algebraic accuracy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619010.png" />, i.e. it is exact for all algebraic polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619011.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619012.png" /> and is not exact for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619013.png" />; it is known as a quadrature formula of Gaussian type. | + | exist and where, moreover, $ \mu _ {0} > 0 $. |
| + | The nodes $ x _ {j} $ |
| + | of formula (1) are the roots of a polynomial of degree $ N $ |
| + | orthogonal on $ [ a, b] $ |
| + | with the weight function $ p ( x) $, |
| + | and the weights are defined by the condition that (1) be an interpolatory formula. A quadrature formula of this type has algebraic accuracy $ 2N - 1 $, |
| + | i.e. it is exact for all algebraic polynomials $ f ( x) $ |
| + | of degree $ \leq 2N - 1 $ |
| + | and is not exact for $ x ^ {2N} $; |
| + | it is known as a quadrature formula of Gaussian type. |
| | | |
| This concept can be generalized as follows. Consider the quadrature formula | | This concept can be generalized as follows. Consider the quadrature formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
− | | + | \int\limits _ { a } ^ { b } |
− | with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619015.png" /> nodes, where the nodes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619016.png" /> are pre-assigned (fixed) while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619017.png" /> are so chosen that (2) be a quadrature formula of highest algebraic accuracy. Let
| + | p ( x) f ( x) dx \approx \ |
− | | + | \sum _ {j = 1 } ^ { m } A _ {j} f ( a _ {j} ) + |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619018.png" /></td> </tr></table>
| + | \sum _ {j = 1 } ^ { n } C _ {j} f ( x _ {j} ) |
− | | + | $$ |
− | Formula (2) is exact for all polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619019.png" /> if and only if it is an interpolatory quadrature formula and the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619020.png" /> is orthogonal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619021.png" /> with the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619022.png" /> to all polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619023.png" />. This reduces the question of the existence of a quadrature formula that is exact for all polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619024.png" /> to the problem of determining a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619025.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619026.png" /> that is orthogonal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619027.png" /> with the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619028.png" />, and to examining the properties of its roots. If the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619029.png" /> are real, simple, lie in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619030.png" />, and none of them is one of the fixed nodes, the required quadrature formula exists. If, moreover,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619031.png" /></td> </tr></table>
| |
− | | |
− | then the algebraic accuracy of the formula is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619032.png" />.
| |
| | | |
− | Under the above assumptions concerning the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619033.png" />, a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619034.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619035.png" />, orthogonal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619036.png" /> with the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619037.png" />, is defined uniquely (up to a non-zero constant factor) in the following special cases.
| + | with $ N = m + n $ |
| + | nodes, where the nodes $ a _ {1} \dots a _ {m} $ |
| + | are pre-assigned (fixed) while $ x _ {1} \dots x _ {n} $ |
| + | are so chosen that (2) be a quadrature formula of highest algebraic accuracy. Let |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619039.png" /> is arbitrary. The single fixed node is an end-point of the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619040.png" />, with the only condition that it be finite.
| + | $$ |
| + | \sigma ( x) = \ |
| + | \prod _ {j = 1 } ^ { m } ( x - a _ {j} ),\ \ |
| + | \omega ( x) = \ |
| + | \prod _ {j = 1 } ^ { n } ( x - x _ {j} ). |
| + | $$ |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619042.png" /> is arbitrary. The two fixed nodes are the end-points of the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619043.png" />, provided they are finite. | + | Formula (2) is exact for all polynomials of degree $ \leq m + 2n - 1 $ |
| + | if and only if it is an interpolatory quadrature formula and the polynomial $ \omega ( x) $ |
| + | is orthogonal on $ [ a, b] $ |
| + | with the weight function $ \sigma ( x) p ( x) $ |
| + | to all polynomials of degree $ \leq n - 1 $. |
| + | This reduces the question of the existence of a quadrature formula that is exact for all polynomials of degree $ \leq 2n - 1 $ |
| + | to the problem of determining a polynomial $ \omega ( x) $ |
| + | of degree $ n $ |
| + | that is orthogonal on $ [ a, b] $ |
| + | with the weight function $ \sigma ( x) p ( x) $, |
| + | and to examining the properties of its roots. If the roots of $ \omega ( x) $ |
| + | are real, simple, lie in $ [ a, b] $, |
| + | and none of them is one of the fixed nodes, the required quadrature formula exists. If, moreover, |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619044.png" /> is arbitrary, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619045.png" />. The fixed nodes are the roots of a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619046.png" /> that is orthogonal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619047.png" /> with the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619048.png" />.
| + | $$ |
| + | \int\limits _ { a } ^ { b } p ( x) \sigma ( x) \omega ^ {2} ( x) dx \neq 0, |
| + | $$ |
| | | |
− | In cases 1) and 2), the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619049.png" /> is orthogonal relative to the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619050.png" />, which is of fixed sign on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619051.png" />, and therefore its roots are real, simple, lie inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619052.png" />, and are consequently distinct from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619053.png" />. The quadrature formula (2) exists, its coefficients are positive and its algebraic accuracy is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619054.png" />. Quadrature formulas corresponding to the cases 1) and 2) are called Markov formulas.
| + | then the algebraic accuracy of the formula is $ m + 2n - 1 $. |
| | | |
− | In case 3), the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619055.png" /> changes sign on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619056.png" /> and this complicates the inspection of the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619057.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619059.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619060.png" />, then the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619061.png" /> lie inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619062.png" /> and separate the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619063.png" />: Between any two consecutive roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619064.png" /> there is exactly one root of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619065.png" /> (see [[#References|[2]]]). With this weight function, the quadrature formula (2) exists and is exact for all polynomials of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619066.png" />; however, one cannot state that its algebraic accuracy is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619067.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619069.png" /> the nodes and the coefficients of the quadrature formula can be specified explicitly (see [[#References|[3]]]); the algebraic accuracy in the former case is increased to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619070.png" />, and in the second case to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619071.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619072.png" /> and the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619073.png" />, the nodes and the coefficients have been computed for the quadrature formula (2) (with fixed nodes of type 3)) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619074.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619075.png" /> varying from 1 to 40 with step 1) (see [[#References|[4]]]); the algebraic accuracy is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619076.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619077.png" /> is even and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619078.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619079.png" /> is odd. A quadrature formula (2) with fixed nodes of type 3) also exists for the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619080.png" /> and the weight function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619081.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076190/q07619082.png" />, and the nodes and the coefficients can be explicitly specified (see [[#References|[3]]]).
| + | Under the above assumptions concerning the weight function $ p ( x) $, |
| + | a polynomial $ \omega ( x) $ |
| + | of degree $ n $, |
| + | orthogonal on $ [ a, b] $ |
| + | with the weight function $ \sigma ( x) p ( x) $, |
| + | is defined uniquely (up to a non-zero constant factor) in the following special cases. |
| | | |
− | ====References====
| + | 1) $ m = 1 $, |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Krylov, "Approximate calculation of integrals" , Macmillan (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Ueber gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören" ''Math. Ann.'' , '''110''' : 4 (1934) pp. 501–513</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P Mysovskikh, "A special case of quadrature formulas containing pre-assigned nodes" ''Izv. Akad. Nauk BelorussSSR. Ser. Fiz.-Tekhn. Navuk'' , '''4''' (1964) pp. 125–127 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.S. Kronrod, "Nodes and weights of quadrature formulas" , Consultants Bureau (1965) (Translated from Russian)</TD></TR></table>
| + | $ n $ |
| + | is arbitrary. The single fixed node is an end-point of the interval $ [ a, b] $, |
| + | with the only condition that it be finite. |
| | | |
| + | 2) $ m = 2 $, |
| + | $ n $ |
| + | is arbitrary. The two fixed nodes are the end-points of the interval $ [ a, b] $, |
| + | provided they are finite. |
| | | |
| + | 3) $ m $ |
| + | is arbitrary, $ n = m + 1 $. |
| + | The fixed nodes are the roots of a polynomial $ P _ {m} ( x) $ |
| + | that is orthogonal on $ [ a, b] $ |
| + | with the weight function $ p ( x) $. |
| | | |
− | ====Comments====
| + | In cases 1) and 2), the polynomial $ \omega ( x) $ |
| + | is orthogonal relative to the weight function $ \sigma ( x) p ( x) $, |
| + | which is of fixed sign on $ [ a, b] $, |
| + | and therefore its roots are real, simple, lie inside $ ( a, b) $, |
| + | and are consequently distinct from $ a, b $. |
| + | The quadrature formula (2) exists, its coefficients are positive and its algebraic accuracy is $ m + 2n - 1 $. |
| + | Quadrature formulas corresponding to the cases 1) and 2) are called Markov formulas. |
| | | |
| + | In case 3), the weight function $ \sigma ( x) p ( x) $ |
| + | changes sign on $ [ a, b] $ |
| + | and this complicates the inspection of the roots of $ \omega ( x) $. |
| + | If $ [ a, b] = [- 1, 1] $ |
| + | and $ p ( x) = ( 1 - x ^ {2} ) ^ \alpha $, |
| + | where $ - 1/2 < \alpha \leq 3/2 $, |
| + | then the roots of $ \omega ( x) $ |
| + | lie inside $ (- 1, 1) $ |
| + | and separate the roots of $ P _ {m} ( x) $: |
| + | Between any two consecutive roots of $ \omega ( x) $ |
| + | there is exactly one root of $ P _ {m} ( x) $( |
| + | see [[#References|[2]]]). With this weight function, the quadrature formula (2) exists and is exact for all polynomials of degree $ \leq 3m + 1 $; |
| + | however, one cannot state that its algebraic accuracy is $ 3m + 1 $. |
| + | For $ \alpha = - 1/2 $ |
| + | and $ \alpha = 1/2 $ |
| + | the nodes and the coefficients of the quadrature formula can be specified explicitly (see [[#References|[3]]]); the algebraic accuracy in the former case is increased to $ 4m - 1 $, |
| + | and in the second case to $ 4m + 1 $. |
| + | For $ p ( x) = 1 $ |
| + | and the interval $ [ 0, 1] $, |
| + | the nodes and the coefficients have been computed for the quadrature formula (2) (with fixed nodes of type 3)) for $ m = 1 ( 1) 40 $( |
| + | i.e. $ m $ |
| + | varying from 1 to 40 with step 1) (see [[#References|[4]]]); the algebraic accuracy is $ 3m + 1 $ |
| + | if $ m $ |
| + | is even and $ 3m + 2 $ |
| + | if $ m $ |
| + | is odd. A quadrature formula (2) with fixed nodes of type 3) also exists for the interval $ [- 1, 1] $ |
| + | and the weight function $ ( 1 - x) ^ \alpha ( 1 + x) ^ {- \alpha } $ |
| + | for $ \alpha = \pm 1/2 $, |
| + | and the nodes and the coefficients can be explicitly specified (see [[#References|[3]]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1975)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> V.I. Krylov, "Approximate calculation of integrals" , Macmillan (1962) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Ueber gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören" ''Math. Ann.'' , '''110''' : 4 (1934) pp. 501–513</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> I.P Mysovskikh, "A special case of quadrature formulas containing pre-assigned nodes" ''Izv. Akad. Nauk BelorussSSR. Ser. Fiz.-Tekhn. Navuk'' , '''4''' (1964) pp. 125–127 (In Russian)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> A.S. Kronrod, "Nodes and weights of quadrature formulas" , Consultants Bureau (1965) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1975)</TD></TR> |
| + | </table> |
A formula of the type
$$ \tag{1 }
\int\limits _ { a } ^ { b }
p ( x) f ( x) dx \approx \
\sum _ {j = 1 } ^ { N } C _ {j} f ( x _ {j} ),
$$
where the weight function $ p ( x) $
is assumed to be non-negative on $ [ a, b] $,
where the integrals
$$
\mu _ {k} = \
\int\limits _ { a } ^ { b } p ( x) x ^ {k} dx,\ \
k = 0, 1 \dots
$$
exist and where, moreover, $ \mu _ {0} > 0 $.
The nodes $ x _ {j} $
of formula (1) are the roots of a polynomial of degree $ N $
orthogonal on $ [ a, b] $
with the weight function $ p ( x) $,
and the weights are defined by the condition that (1) be an interpolatory formula. A quadrature formula of this type has algebraic accuracy $ 2N - 1 $,
i.e. it is exact for all algebraic polynomials $ f ( x) $
of degree $ \leq 2N - 1 $
and is not exact for $ x ^ {2N} $;
it is known as a quadrature formula of Gaussian type.
This concept can be generalized as follows. Consider the quadrature formula
$$ \tag{2 }
\int\limits _ { a } ^ { b }
p ( x) f ( x) dx \approx \
\sum _ {j = 1 } ^ { m } A _ {j} f ( a _ {j} ) +
\sum _ {j = 1 } ^ { n } C _ {j} f ( x _ {j} )
$$
with $ N = m + n $
nodes, where the nodes $ a _ {1} \dots a _ {m} $
are pre-assigned (fixed) while $ x _ {1} \dots x _ {n} $
are so chosen that (2) be a quadrature formula of highest algebraic accuracy. Let
$$
\sigma ( x) = \
\prod _ {j = 1 } ^ { m } ( x - a _ {j} ),\ \
\omega ( x) = \
\prod _ {j = 1 } ^ { n } ( x - x _ {j} ).
$$
Formula (2) is exact for all polynomials of degree $ \leq m + 2n - 1 $
if and only if it is an interpolatory quadrature formula and the polynomial $ \omega ( x) $
is orthogonal on $ [ a, b] $
with the weight function $ \sigma ( x) p ( x) $
to all polynomials of degree $ \leq n - 1 $.
This reduces the question of the existence of a quadrature formula that is exact for all polynomials of degree $ \leq 2n - 1 $
to the problem of determining a polynomial $ \omega ( x) $
of degree $ n $
that is orthogonal on $ [ a, b] $
with the weight function $ \sigma ( x) p ( x) $,
and to examining the properties of its roots. If the roots of $ \omega ( x) $
are real, simple, lie in $ [ a, b] $,
and none of them is one of the fixed nodes, the required quadrature formula exists. If, moreover,
$$
\int\limits _ { a } ^ { b } p ( x) \sigma ( x) \omega ^ {2} ( x) dx \neq 0,
$$
then the algebraic accuracy of the formula is $ m + 2n - 1 $.
Under the above assumptions concerning the weight function $ p ( x) $,
a polynomial $ \omega ( x) $
of degree $ n $,
orthogonal on $ [ a, b] $
with the weight function $ \sigma ( x) p ( x) $,
is defined uniquely (up to a non-zero constant factor) in the following special cases.
1) $ m = 1 $,
$ n $
is arbitrary. The single fixed node is an end-point of the interval $ [ a, b] $,
with the only condition that it be finite.
2) $ m = 2 $,
$ n $
is arbitrary. The two fixed nodes are the end-points of the interval $ [ a, b] $,
provided they are finite.
3) $ m $
is arbitrary, $ n = m + 1 $.
The fixed nodes are the roots of a polynomial $ P _ {m} ( x) $
that is orthogonal on $ [ a, b] $
with the weight function $ p ( x) $.
In cases 1) and 2), the polynomial $ \omega ( x) $
is orthogonal relative to the weight function $ \sigma ( x) p ( x) $,
which is of fixed sign on $ [ a, b] $,
and therefore its roots are real, simple, lie inside $ ( a, b) $,
and are consequently distinct from $ a, b $.
The quadrature formula (2) exists, its coefficients are positive and its algebraic accuracy is $ m + 2n - 1 $.
Quadrature formulas corresponding to the cases 1) and 2) are called Markov formulas.
In case 3), the weight function $ \sigma ( x) p ( x) $
changes sign on $ [ a, b] $
and this complicates the inspection of the roots of $ \omega ( x) $.
If $ [ a, b] = [- 1, 1] $
and $ p ( x) = ( 1 - x ^ {2} ) ^ \alpha $,
where $ - 1/2 < \alpha \leq 3/2 $,
then the roots of $ \omega ( x) $
lie inside $ (- 1, 1) $
and separate the roots of $ P _ {m} ( x) $:
Between any two consecutive roots of $ \omega ( x) $
there is exactly one root of $ P _ {m} ( x) $(
see [2]). With this weight function, the quadrature formula (2) exists and is exact for all polynomials of degree $ \leq 3m + 1 $;
however, one cannot state that its algebraic accuracy is $ 3m + 1 $.
For $ \alpha = - 1/2 $
and $ \alpha = 1/2 $
the nodes and the coefficients of the quadrature formula can be specified explicitly (see [3]); the algebraic accuracy in the former case is increased to $ 4m - 1 $,
and in the second case to $ 4m + 1 $.
For $ p ( x) = 1 $
and the interval $ [ 0, 1] $,
the nodes and the coefficients have been computed for the quadrature formula (2) (with fixed nodes of type 3)) for $ m = 1 ( 1) 40 $(
i.e. $ m $
varying from 1 to 40 with step 1) (see [4]); the algebraic accuracy is $ 3m + 1 $
if $ m $
is even and $ 3m + 2 $
if $ m $
is odd. A quadrature formula (2) with fixed nodes of type 3) also exists for the interval $ [- 1, 1] $
and the weight function $ ( 1 - x) ^ \alpha ( 1 + x) ^ {- \alpha } $
for $ \alpha = \pm 1/2 $,
and the nodes and the coefficients can be explicitly specified (see [3]).
References
[1] | V.I. Krylov, "Approximate calculation of integrals" , Macmillan (1962) (Translated from Russian) |
[2] | G. Szegö, "Ueber gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören" Math. Ann. , 110 : 4 (1934) pp. 501–513 |
[3] | I.P Mysovskikh, "A special case of quadrature formulas containing pre-assigned nodes" Izv. Akad. Nauk BelorussSSR. Ser. Fiz.-Tekhn. Navuk , 4 (1964) pp. 125–127 (In Russian) |
[4] | A.S. Kronrod, "Nodes and weights of quadrature formulas" , Consultants Bureau (1965) (Translated from Russian) |
[a1] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1975) |