Difference between revisions of "Macdonald function"
(Importing text file) |
(latex details) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0620101.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/M062/M.0602010 Macdonald function, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''modified cylinder function, Bessel function of imaginary argument'' | ''modified cylinder function, Bessel function of imaginary argument'' | ||
A function | A function | ||
− | + | $$ | |
+ | K _ \nu ( z) = | ||
+ | \frac \pi {2} | ||
+ | |||
+ | \frac{I _ {- \nu } ( z) - I _ \nu ( z) }{\sin \nu \pi } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ \nu $ | ||
+ | is an arbitrary non-integral real number and | ||
+ | |||
+ | $$ | ||
+ | I _ \nu ( z) = \ | ||
+ | \sum _ {m=0}^ \infty | ||
+ | |||
+ | \frac{\left ( | ||
+ | \frac{z}{2} | ||
+ | \right ) ^ {\nu + 2 m } }{m ! \Gamma ( \nu + m + 1 ) } | ||
+ | |||
+ | $$ | ||
− | + | is a cylinder function with pure imaginary argument (cf. [[Cylinder functions]]). They have been discussed by H.M. Macdonald [[#References|[1]]]. If $ n $ | |
+ | is an integer, then | ||
− | + | $$ | |
+ | K _ {n} ( z) = \lim\limits _ {\nu \rightarrow n } K _ \nu ( z) . | ||
+ | $$ | ||
− | + | The Macdonald function $ K _ \nu ( z) $ | |
+ | is the solution of the differential equation | ||
− | + | $$ \tag{* } | |
+ | z ^ {2} | ||
− | + | \frac{d ^ {2} y }{d z ^ {2} } | |
+ | + | ||
+ | z | ||
− | + | \frac{d y }{d z } | |
+ | - | ||
+ | ( z ^ {2} + \nu ^ {2} ) y = 0 | ||
+ | $$ | ||
− | that tends exponentially to zero as | + | that tends exponentially to zero as $ z \rightarrow \infty $ |
+ | and takes positive values. The functions $ I _ \nu ( z) $ | ||
+ | and $ K _ \nu ( z) $ | ||
+ | form a [[Fundamental system of solutions|fundamental system of solutions]] of (*). | ||
− | For | + | For $ \nu \geq 0 $, |
+ | $ K _ \nu ( z) $ | ||
+ | has roots only when $ \mathop{\rm Re} z < 0 $. | ||
+ | If $ \pi / 2 < | \mathop{\rm arg} z | < \pi $, | ||
+ | then the number of roots in these two sectors is equal to the even number nearest to $ \nu - 1 / 2 $, | ||
+ | provided that $ \nu - 1 / 2 $ | ||
+ | is not an integer; in the latter case the number of roots is equal to $ \nu - 1 / 2 $. | ||
+ | For $ \mathop{\rm arg} z = \pm \pi $ | ||
+ | there are no roots if $ \nu - 1 / 2 $ | ||
+ | is not an integer. | ||
Series and asymptotic representations are: | Series and asymptotic representations are: | ||
− | + | $$ | |
+ | K _ {n + 1 / 2 } ( z) = \ | ||
+ | \left ( | ||
+ | \frac \pi {2z} | ||
+ | \right ) ^ {1/2} e ^ {-z}\sum _ {r=0} ^ { n } | ||
− | + | \frac{( n + r ) ! }{r ! ( n - r ) ! ( 2 z ) ^ {r} } | |
+ | , | ||
+ | $$ | ||
− | + | where $ n $ | |
+ | is a non-negative integer; | ||
− | + | $$ | |
+ | K _ {0} ( z) = \ | ||
+ | - \mathop{\rm ln} \left ( | ||
+ | \frac{z}{2} | ||
+ | \right ) I _ {0} ( z) + | ||
+ | \sum _ {m=0}^ \infty | ||
+ | \left ( | ||
+ | \frac{z}{2} | ||
+ | \right ) ^ {2m} | ||
− | + | \frac{1}{( m ! ) ^ {2} } | |
− | + | \psi ( m + 1 ) , | |
+ | $$ | ||
− | + | $$ | |
+ | \psi ( 1) = - C ,\ \psi ( m + 1 ) = 1 + | ||
+ | \frac{1}{2} | ||
+ | + \dots + | ||
+ | \frac{1}{m} | ||
+ | - C , | ||
+ | $$ | ||
− | where | + | where $ C = 0. 5772157 \dots $ |
+ | is the Euler constant; | ||
− | + | $$ | |
+ | K _ {n} ( z) = \ | ||
− | + | \frac{1}{2} | |
− | + | \sum _ {m=0} ^ {n-1} | |
+ | |||
+ | \frac{( - 1 ) ^ {m} ( n - m - 1 ) ! }{m ! ( z / 2 ) ^ {n - 2 m } } | ||
+ | + | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | + | ||
+ | ( - 1 ) ^ {n-1} \sum _ {m=0} ^ \infty | ||
+ | \frac{( z / 2 ) ^ | ||
+ | {n + 2 m } }{m ! ( n + m ) ! } | ||
+ | \left \{ \mathop{\rm ln} \left ( | ||
+ | |||
+ | \frac{z}{2} | ||
+ | \right ) - | ||
+ | \frac{\psi ( m + 1 ) - \psi ( n + m + 1 ) }{2} | ||
+ | \right \} , | ||
+ | $$ | ||
+ | |||
+ | where $ n \geq 1 $ | ||
+ | is an integer; | ||
+ | |||
+ | $$ | ||
+ | K _ {\nu\ } \sim | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \sim \ | ||
+ | \left ( | ||
+ | \frac \pi {2z} | ||
+ | \right ) ^ {1/2} e ^ {-z} \left [ 1 + | ||
+ | \frac{ | ||
+ | 4 \nu ^ {2} - 1 ^ {2} }{1 ! 8 z } | ||
+ | + | ||
+ | \frac{( 4 | ||
+ | \nu ^ {2} - 1 ^ {2} ) ( 4 \nu ^ {2} - 3 ^ {2} ) | ||
+ | }{2 ! ( 8 z ) ^ {2} } | ||
+ | + \dots \right ] , | ||
+ | $$ | ||
+ | |||
+ | for large $ z $ | ||
+ | and $ | \mathop{\rm arg} z | < \pi / 2 $. | ||
Recurrence formulas: | Recurrence formulas: | ||
− | + | $$ | |
+ | K _ {\nu - 1 } ( z) - K _ {\nu + 1 } ( z) = - | ||
+ | |||
+ | \frac{2 \nu }{z} | ||
+ | K _ \nu ( z) , | ||
+ | $$ | ||
− | + | $$ | |
+ | K _ {\nu - 1 } ( z) + K _ {\nu + 1 } ( z) = - 2 | ||
+ | \frac{d K _ \nu ( z) }{d z } | ||
+ | . | ||
+ | $$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H.M. Macdonald, "Zeroes of the Bessel functions" ''Proc. London Math. Soc.'' , '''30''' (1899) pp. 165–179</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1–2''' , Cambridge Univ. Press (1952)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H.M. Macdonald, "Zeroes of the Bessel functions" ''Proc. London Math. Soc.'' , '''30''' (1899) pp. 165–179</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1–2''' , Cambridge Univ. Press (1952)</TD></TR> | ||
+ | </table> |
Latest revision as of 08:23, 20 January 2024
modified cylinder function, Bessel function of imaginary argument
A function
$$ K _ \nu ( z) = \frac \pi {2} \frac{I _ {- \nu } ( z) - I _ \nu ( z) }{\sin \nu \pi } , $$
where $ \nu $ is an arbitrary non-integral real number and
$$ I _ \nu ( z) = \ \sum _ {m=0}^ \infty \frac{\left ( \frac{z}{2} \right ) ^ {\nu + 2 m } }{m ! \Gamma ( \nu + m + 1 ) } $$
is a cylinder function with pure imaginary argument (cf. Cylinder functions). They have been discussed by H.M. Macdonald [1]. If $ n $ is an integer, then
$$ K _ {n} ( z) = \lim\limits _ {\nu \rightarrow n } K _ \nu ( z) . $$
The Macdonald function $ K _ \nu ( z) $ is the solution of the differential equation
$$ \tag{* } z ^ {2} \frac{d ^ {2} y }{d z ^ {2} } + z \frac{d y }{d z } - ( z ^ {2} + \nu ^ {2} ) y = 0 $$
that tends exponentially to zero as $ z \rightarrow \infty $ and takes positive values. The functions $ I _ \nu ( z) $ and $ K _ \nu ( z) $ form a fundamental system of solutions of (*).
For $ \nu \geq 0 $, $ K _ \nu ( z) $ has roots only when $ \mathop{\rm Re} z < 0 $. If $ \pi / 2 < | \mathop{\rm arg} z | < \pi $, then the number of roots in these two sectors is equal to the even number nearest to $ \nu - 1 / 2 $, provided that $ \nu - 1 / 2 $ is not an integer; in the latter case the number of roots is equal to $ \nu - 1 / 2 $. For $ \mathop{\rm arg} z = \pm \pi $ there are no roots if $ \nu - 1 / 2 $ is not an integer.
Series and asymptotic representations are:
$$ K _ {n + 1 / 2 } ( z) = \ \left ( \frac \pi {2z} \right ) ^ {1/2} e ^ {-z}\sum _ {r=0} ^ { n } \frac{( n + r ) ! }{r ! ( n - r ) ! ( 2 z ) ^ {r} } , $$
where $ n $ is a non-negative integer;
$$ K _ {0} ( z) = \ - \mathop{\rm ln} \left ( \frac{z}{2} \right ) I _ {0} ( z) + \sum _ {m=0}^ \infty \left ( \frac{z}{2} \right ) ^ {2m} \frac{1}{( m ! ) ^ {2} } \psi ( m + 1 ) , $$
$$ \psi ( 1) = - C ,\ \psi ( m + 1 ) = 1 + \frac{1}{2} + \dots + \frac{1}{m} - C , $$
where $ C = 0. 5772157 \dots $ is the Euler constant;
$$ K _ {n} ( z) = \ \frac{1}{2} \sum _ {m=0} ^ {n-1} \frac{( - 1 ) ^ {m} ( n - m - 1 ) ! }{m ! ( z / 2 ) ^ {n - 2 m } } + $$
$$ + ( - 1 ) ^ {n-1} \sum _ {m=0} ^ \infty \frac{( z / 2 ) ^ {n + 2 m } }{m ! ( n + m ) ! } \left \{ \mathop{\rm ln} \left ( \frac{z}{2} \right ) - \frac{\psi ( m + 1 ) - \psi ( n + m + 1 ) }{2} \right \} , $$
where $ n \geq 1 $ is an integer;
$$ K _ {\nu\ } \sim $$
$$ \sim \ \left ( \frac \pi {2z} \right ) ^ {1/2} e ^ {-z} \left [ 1 + \frac{ 4 \nu ^ {2} - 1 ^ {2} }{1 ! 8 z } + \frac{( 4 \nu ^ {2} - 1 ^ {2} ) ( 4 \nu ^ {2} - 3 ^ {2} ) }{2 ! ( 8 z ) ^ {2} } + \dots \right ] , $$
for large $ z $ and $ | \mathop{\rm arg} z | < \pi / 2 $.
Recurrence formulas:
$$ K _ {\nu - 1 } ( z) - K _ {\nu + 1 } ( z) = - \frac{2 \nu }{z} K _ \nu ( z) , $$
$$ K _ {\nu - 1 } ( z) + K _ {\nu + 1 } ( z) = - 2 \frac{d K _ \nu ( z) }{d z } . $$
References
[1] | H.M. Macdonald, "Zeroes of the Bessel functions" Proc. London Math. Soc. , 30 (1899) pp. 165–179 |
[2] | G.N. Watson, "A treatise on the theory of Bessel functions" , 1–2 , Cambridge Univ. Press (1952) |
Macdonald function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Macdonald_function&oldid=19172