Difference between revisions of "Longman method"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 23: | Line 23: | ||
$$ | $$ | ||
− | x _ {0} = a < x _ {1} < \dots < x _ {n} < b = x _ {n+} | + | x _ {0} = a < x _ {1} < \dots < x _ {n} < b = x _ {n+1} , |
$$ | $$ | ||
Line 29: | Line 29: | ||
$$ | $$ | ||
− | v _ {i} = ( - 1 ) ^ {i} \int\limits _ {x _ {i} } ^ { {x _ i+} | + | v _ {i} = ( - 1 ) ^ {i} \int\limits _ {x _ {i} } ^ { {x _ i+1} } f( x) dx ,\ \ |
i = 0 \dots n , | i = 0 \dots n , | ||
$$ | $$ | ||
Line 37: | Line 37: | ||
$$ | $$ | ||
− | S = \ | + | S = \sum_{j=0}^ { n } ( - 1 ) ^ {j} v _ {j} . |
$$ | $$ | ||
It is assumed that $ f $ | It is assumed that $ f $ | ||
− | preserves its sign on the interval $ [ x _ {i} , x _ {i+} | + | preserves its sign on the interval $ [ x _ {i} , x _ {i+1} ] $, |
has different signs on adjacent intervals, and $ v _ {i} \neq 0 $, | has different signs on adjacent intervals, and $ v _ {i} \neq 0 $, | ||
$ i = 0 \dots n $. | $ i = 0 \dots n $. | ||
Line 56: | Line 56: | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | S = \ | + | S = \sum_{k=0}^ { p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + |
$$ | $$ | ||
$$ | $$ | ||
+ | + | ||
− | ( - 1) ^ {n} \ | + | ( - 1) ^ {n} \sum_{k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k+2} ^ {-p} ( - 1 ) ^ {p} \sum_{k=0}^{n-p} ( - 1 ) ^ {k} \Delta ^ {p} v _ {k} . |
$$ | $$ | ||
Line 69: | Line 69: | ||
$$ | $$ | ||
− | \Delta v _ {j} = v _ {j+} | + | \Delta v _ {j} = v _ {j+1} - v _ {j} ,\ j= 0 \dots n- 1, |
$$ | $$ | ||
$$ | $$ | ||
− | \Delta ^ {r+} | + | \Delta ^ {r+1} v _ {j} = \Delta ^ {r} v _ {j+1} - \Delta ^ {r} v _ {j} , |
$$ | $$ | ||
Line 85: | Line 85: | ||
$$ \tag{2 } | $$ \tag{2 } | ||
− | S \cong \ | + | S \cong \sum_{k=0}^{p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + ( - 1 ) ^ {n} \sum _ {k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k} |
$$ | $$ | ||
Line 91: | Line 91: | ||
To calculate the right-hand side of (2) it is sufficient to know the first $ p $ | To calculate the right-hand side of (2) it is sufficient to know the first $ p $ | ||
values $ v _ {j} $, | values $ v _ {j} $, | ||
− | that is, the values $ v _ {0} \dots v _ {p-} | + | that is, the values $ v _ {0} \dots v _ {p-1} $, |
and the last $ p $ | and the last $ p $ | ||
− | values $ v _ {n} \dots v _ {n- | + | values $ v _ {n} \dots v _ {n-p+1} $. |
Longman's method consists in the use of (2) for an approximate calculation of the sum $ S $. | Longman's method consists in the use of (2) for an approximate calculation of the sum $ S $. | ||
Line 101: | Line 101: | ||
$$ | $$ | ||
− | I = \ | + | I = \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} , |
$$ | $$ | ||
Line 107: | Line 107: | ||
$$ | $$ | ||
− | \ | + | \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} = \sum_{i=0}^ \infty (-1) ^ {i} 2^{-i-1} \Delta ^ {i} v _ {0} |
− | ) ^ {i} 2 | + | $$ |
(the Euler transform) and replace the series on the right-hand side by a partial sum. | (the Euler transform) and replace the series on the right-hand side by a partial sum. | ||
Line 115: | Line 115: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Longman, "A method for the numerical evaluation of finite integrals of oscillatory functions" ''Math. Comput.'' , '''14''' : 69 (1960) pp. 53–59</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Longman, "A method for the numerical evaluation of finite integrals of oscillatory functions" ''Math. Comput.'' , '''14''' : 69 (1960) pp. 53–59</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984)</TD></TR> | ||
+ | </table> |
Latest revision as of 19:56, 19 January 2024
A method for the approximate calculation of a definite integral
$$ I = \int\limits _ { a } ^ { b } f ( x) dx , $$
where $ f $ has exactly $ n $ roots $ x _ {i} $ inside the interval $ [ a, b] $,
$$ x _ {0} = a < x _ {1} < \dots < x _ {n} < b = x _ {n+1} , $$
and satisfies the conditions stated below. Let
$$ v _ {i} = ( - 1 ) ^ {i} \int\limits _ {x _ {i} } ^ { {x _ i+1} } f( x) dx ,\ \ i = 0 \dots n , $$
then $ I = S $, where
$$ S = \sum_{j=0}^ { n } ( - 1 ) ^ {j} v _ {j} . $$
It is assumed that $ f $ preserves its sign on the interval $ [ x _ {i} , x _ {i+1} ] $, has different signs on adjacent intervals, and $ v _ {i} \neq 0 $, $ i = 0 \dots n $. Such a function $ f $ is said to be oscillatory. The calculation of $ I $ by means of a quadrature formula for large $ n $ is difficult, since a good approximation of an oscillatory function on the whole interval $ [ a , b ] $ is impossible in practice. The use of the equality $ I = S $ leads to the need to calculate all integrals $ v _ {j} $, which is also inadvisable in the case of large $ n $.
The approximate calculation of $ I $ in Longman's method is based on the equality ( $ n \geq p $)
$$ \tag{1 } S = \sum_{k=0}^ { p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + $$
$$ + ( - 1) ^ {n} \sum_{k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k+2} ^ {-p} ( - 1 ) ^ {p} \sum_{k=0}^{n-p} ( - 1 ) ^ {k} \Delta ^ {p} v _ {k} . $$
In (1) the finite differences of $ v _ {j} $ as functions of the discrete argument $ j $ occur:
$$ \Delta v _ {j} = v _ {j+1} - v _ {j} ,\ j= 0 \dots n- 1, $$
$$ \Delta ^ {r+1} v _ {j} = \Delta ^ {r} v _ {j+1} - \Delta ^ {r} v _ {j} , $$
$$ r = 1 \dots p- 1; \ j = 0 \dots n- r- 1 . $$
If $ v _ {j} $ is such that on the right-hand side of (1) one can neglect terms containing finite differences of order $ p $, then the approximate equality
$$ \tag{2 } S \cong \sum_{k=0}^{p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + ( - 1 ) ^ {n} \sum _ {k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k} $$
can be used to calculate $ S $. To calculate the right-hand side of (2) it is sufficient to know the first $ p $ values $ v _ {j} $, that is, the values $ v _ {0} \dots v _ {p-1} $, and the last $ p $ values $ v _ {n} \dots v _ {n-p+1} $. Longman's method consists in the use of (2) for an approximate calculation of the sum $ S $.
If in the integral $ I $ the upper limit of integration $ b = + \infty $ and
$$ I = \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} , $$
then instead of (1) one must use the equality
$$ \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} = \sum_{i=0}^ \infty (-1) ^ {i} 2^{-i-1} \Delta ^ {i} v _ {0} $$
(the Euler transform) and replace the series on the right-hand side by a partial sum.
The method was proposed by I.M. Longman [1].
References
[1] | I.M. Longman, "A method for the numerical evaluation of finite integrals of oscillatory functions" Math. Comput. , 14 : 69 (1960) pp. 53–59 |
[2] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) |
Longman method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Longman_method&oldid=47713