Difference between revisions of "Longman method"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0608201.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/L060/L.0600820 Longman method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A method for the approximate calculation of a definite integral | A method for the approximate calculation of a definite integral | ||
− | + | $$ | |
+ | I = \int\limits _ { a } ^ { b } f ( x) dx , | ||
+ | $$ | ||
− | where | + | where $ f $ |
+ | has exactly $ n $ | ||
+ | roots $ x _ {i} $ | ||
+ | inside the interval $ [ a, b] $, | ||
− | < | + | $$ |
+ | x _ {0} = a < x _ {1} < \dots < x _ {n} < b = x _ {n+1} , | ||
+ | $$ | ||
and satisfies the conditions stated below. Let | and satisfies the conditions stated below. Let | ||
− | + | $$ | |
+ | v _ {i} = ( - 1 ) ^ {i} \int\limits _ {x _ {i} } ^ { {x _ i+1} } f( x) dx ,\ \ | ||
+ | i = 0 \dots n , | ||
+ | $$ | ||
− | then | + | then $ I = S $, |
+ | where | ||
− | + | $$ | |
+ | S = \sum_{j=0}^ { n } ( - 1 ) ^ {j} v _ {j} . | ||
+ | $$ | ||
− | It is assumed that | + | It is assumed that $ f $ |
+ | preserves its sign on the interval $ [ x _ {i} , x _ {i+1} ] $, | ||
+ | has different signs on adjacent intervals, and $ v _ {i} \neq 0 $, | ||
+ | $ i = 0 \dots n $. | ||
+ | Such a function $ f $ | ||
+ | is said to be oscillatory. The calculation of $ I $ | ||
+ | by means of a quadrature formula for large $ n $ | ||
+ | is difficult, since a good approximation of an oscillatory function on the whole interval $ [ a , b ] $ | ||
+ | is impossible in practice. The use of the equality $ I = S $ | ||
+ | leads to the need to calculate all integrals $ v _ {j} $, | ||
+ | which is also inadvisable in the case of large $ n $. | ||
− | The approximate calculation of | + | The approximate calculation of $ I $ |
+ | in Longman's method is based on the equality ( $ n \geq p $) | ||
− | + | $$ \tag{1 } | |
+ | S = \sum_{k=0}^ { p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | ( - 1) ^ {n} \sum_{k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k+2} ^ {-p} ( - 1 ) ^ {p} \sum_{k=0}^{n-p} ( - 1 ) ^ {k} \Delta ^ {p} v _ {k} . | ||
+ | $$ | ||
− | In (1) the finite differences of | + | In (1) the finite differences of $ v _ {j} $ |
+ | as functions of the discrete argument $ j $ | ||
+ | occur: | ||
− | + | $$ | |
+ | \Delta v _ {j} = v _ {j+1} - v _ {j} ,\ j= 0 \dots n- 1, | ||
+ | $$ | ||
− | + | $$ | |
+ | \Delta ^ {r+1} v _ {j} = \Delta ^ {r} v _ {j+1} - \Delta ^ {r} v _ {j} , | ||
+ | $$ | ||
− | + | $$ | |
+ | r = 1 \dots p- 1; \ j = 0 \dots n- r- 1 . | ||
+ | $$ | ||
− | If | + | If $ v _ {j} $ |
+ | is such that on the right-hand side of (1) one can neglect terms containing finite differences of order $ p $, | ||
+ | then the approximate equality | ||
− | + | $$ \tag{2 } | |
+ | S \cong \sum_{k=0}^{p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + ( - 1 ) ^ {n} \sum _ {k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k} | ||
+ | $$ | ||
− | can be used to calculate | + | can be used to calculate $ S $. |
+ | To calculate the right-hand side of (2) it is sufficient to know the first $ p $ | ||
+ | values $ v _ {j} $, | ||
+ | that is, the values $ v _ {0} \dots v _ {p-1} $, | ||
+ | and the last $ p $ | ||
+ | values $ v _ {n} \dots v _ {n-p+1} $. | ||
+ | Longman's method consists in the use of (2) for an approximate calculation of the sum $ S $. | ||
− | If in the integral | + | If in the integral $ I $ |
+ | the upper limit of integration $ b = + \infty $ | ||
+ | and | ||
− | + | $$ | |
+ | I = \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} , | ||
+ | $$ | ||
then instead of (1) one must use the equality | then instead of (1) one must use the equality | ||
− | + | $$ | |
+ | \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} = \sum_{i=0}^ \infty (-1) ^ {i} 2^{-i-1} \Delta ^ {i} v _ {0} | ||
+ | $$ | ||
(the Euler transform) and replace the series on the right-hand side by a partial sum. | (the Euler transform) and replace the series on the right-hand side by a partial sum. | ||
Line 50: | Line 115: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Longman, "A method for the numerical evaluation of finite integrals of oscillatory functions" ''Math. Comput.'' , '''14''' : 69 (1960) pp. 53–59</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Longman, "A method for the numerical evaluation of finite integrals of oscillatory functions" ''Math. Comput.'' , '''14''' : 69 (1960) pp. 53–59</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984)</TD></TR> | ||
+ | </table> |
Latest revision as of 19:56, 19 January 2024
A method for the approximate calculation of a definite integral
$$ I = \int\limits _ { a } ^ { b } f ( x) dx , $$
where $ f $ has exactly $ n $ roots $ x _ {i} $ inside the interval $ [ a, b] $,
$$ x _ {0} = a < x _ {1} < \dots < x _ {n} < b = x _ {n+1} , $$
and satisfies the conditions stated below. Let
$$ v _ {i} = ( - 1 ) ^ {i} \int\limits _ {x _ {i} } ^ { {x _ i+1} } f( x) dx ,\ \ i = 0 \dots n , $$
then $ I = S $, where
$$ S = \sum_{j=0}^ { n } ( - 1 ) ^ {j} v _ {j} . $$
It is assumed that $ f $ preserves its sign on the interval $ [ x _ {i} , x _ {i+1} ] $, has different signs on adjacent intervals, and $ v _ {i} \neq 0 $, $ i = 0 \dots n $. Such a function $ f $ is said to be oscillatory. The calculation of $ I $ by means of a quadrature formula for large $ n $ is difficult, since a good approximation of an oscillatory function on the whole interval $ [ a , b ] $ is impossible in practice. The use of the equality $ I = S $ leads to the need to calculate all integrals $ v _ {j} $, which is also inadvisable in the case of large $ n $.
The approximate calculation of $ I $ in Longman's method is based on the equality ( $ n \geq p $)
$$ \tag{1 } S = \sum_{k=0}^ { p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + $$
$$ + ( - 1) ^ {n} \sum_{k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k+2} ^ {-p} ( - 1 ) ^ {p} \sum_{k=0}^{n-p} ( - 1 ) ^ {k} \Delta ^ {p} v _ {k} . $$
In (1) the finite differences of $ v _ {j} $ as functions of the discrete argument $ j $ occur:
$$ \Delta v _ {j} = v _ {j+1} - v _ {j} ,\ j= 0 \dots n- 1, $$
$$ \Delta ^ {r+1} v _ {j} = \Delta ^ {r} v _ {j+1} - \Delta ^ {r} v _ {j} , $$
$$ r = 1 \dots p- 1; \ j = 0 \dots n- r- 1 . $$
If $ v _ {j} $ is such that on the right-hand side of (1) one can neglect terms containing finite differences of order $ p $, then the approximate equality
$$ \tag{2 } S \cong \sum_{k=0}^{p-1} ( - 1 ) ^ {k} 2 ^ {- k - 1 } \Delta ^ {k} v _ {0} + ( - 1 ) ^ {n} \sum _ {k=0}^ { p-1} 2 ^ {- k - 1 } \Delta ^ {k} v _ {n-k} $$
can be used to calculate $ S $. To calculate the right-hand side of (2) it is sufficient to know the first $ p $ values $ v _ {j} $, that is, the values $ v _ {0} \dots v _ {p-1} $, and the last $ p $ values $ v _ {n} \dots v _ {n-p+1} $. Longman's method consists in the use of (2) for an approximate calculation of the sum $ S $.
If in the integral $ I $ the upper limit of integration $ b = + \infty $ and
$$ I = \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} , $$
then instead of (1) one must use the equality
$$ \sum_{i=0}^ \infty ( - 1 ) ^ {i} v _ {i} = \sum_{i=0}^ \infty (-1) ^ {i} 2^{-i-1} \Delta ^ {i} v _ {0} $$
(the Euler transform) and replace the series on the right-hand side by a partial sum.
The method was proposed by I.M. Longman [1].
References
[1] | I.M. Longman, "A method for the numerical evaluation of finite integrals of oscillatory functions" Math. Comput. , 14 : 69 (1960) pp. 53–59 |
[2] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) |
Longman method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Longman_method&oldid=16230