|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A method for characterizing the dimension of a compactum lying in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477301.png" /> in terms of metric properties of the complementary space. The essential measure of a cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477302.png" /> in a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477303.png" /> is taken to be the least upper bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477304.png" /> for which it is possible to select a compact support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477305.png" /> of the cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477306.png" /> such that the cycle is not homologous to zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477307.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477308.png" />-dimensional homological diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477309.png" /> of a cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773010.png" /> in an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773011.png" /> is the greatest lower bound of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773012.png" />-dimensional diameters of the bodies of all cycles that are homologous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773013.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773014.png" />. Here, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773016.png" />-dimensional diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773017.png" /> of a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773018.png" /> is the greatest lower bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773019.png" /> for which there exists a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773020.png" />-shift of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773021.png" /> in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773022.png" />-dimensional compactum (and thus in a polyhedron).
| + | <!-- |
| + | h0477301.png |
| + | $#A+1 = 107 n = 0 |
| + | $#C+1 = 107 : ~/encyclopedia/old_files/data/H047/H.0407730 Homological containment |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773023.png" />-dimensional cycle of the open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773024.png" /> which is linked with each point of the compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773025.png" /> is said to be a pocket around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773026.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The pocket theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773027.png" />. Then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773028.png" /> such that any pocket around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773029.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773030.png" />-dimensional homological diameter larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773031.png" />, while the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773032.png" />-dimensional homological diameter of any cycle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773033.png" /> is zero. Pockets around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773034.png" /> with arbitrary small essential measure always exist in this situation. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773035.png" />, then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773036.png" /> such that for any pocket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773037.png" /> around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773038.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773039.png" /> is true (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773041.png" /> for any pocket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773042.png" />). | + | A method for characterizing the dimension of a compactum lying in a Euclidean space $ \mathbf R ^ {n} $ |
| + | in terms of metric properties of the complementary space. The essential measure of a cycle $ z $ |
| + | in a compactum $ \Phi \subset \mathbf R ^ {n} $ |
| + | is taken to be the least upper bound of those $ \epsilon > 0 $ |
| + | for which it is possible to select a compact support $ \Phi _ {1} \subseteq \Phi $ |
| + | of the cycle $ z $ |
| + | such that the cycle is not homologous to zero in $ O ( \Phi _ {1} , \epsilon ) $. |
| + | The $ p $- |
| + | dimensional homological diameter $ \alpha _ \Gamma ^ {p} z $ |
| + | of a cycle $ z $ |
| + | in an open set $ \Gamma = \mathbf R ^ {n} \setminus \Phi $ |
| + | is the greatest lower bound of the $ p $- |
| + | dimensional diameters of the bodies of all cycles that are homologous in $ \Gamma $ |
| + | to $ z $. |
| + | Here, the $ p $- |
| + | dimensional diameter $ \alpha ^ {p} X $ |
| + | of a compactum $ X \subset \mathbf R ^ {n} $ |
| + | is the greatest lower bound of those $ \epsilon > 0 $ |
| + | for which there exists a continuous $ \epsilon $- |
| + | shift of $ X $ |
| + | in a $ p $- |
| + | dimensional compactum (and thus in a polyhedron). |
| + | |
| + | Any $ ( n - 1 ) $- |
| + | dimensional cycle of the open set $ \Gamma = \mathbf R ^ {n} \setminus \Phi $ |
| + | which is linked with each point of the compactum $ \Phi $ |
| + | is said to be a pocket around $ \Phi $. |
| + | |
| + | The pocket theorem. Let $ r = \mathop{\rm dim} \Phi \leq n - 1 $. |
| + | Then there exists an $ \alpha > 0 $ |
| + | such that any pocket around $ \Phi $ |
| + | has $ ( r - 1) $- |
| + | dimensional homological diameter larger than $ \alpha $, |
| + | while the $ r $- |
| + | dimensional homological diameter of any cycle in $ \Gamma $ |
| + | is zero. Pockets around $ \Phi $ |
| + | with arbitrary small essential measure always exist in this situation. On the other hand, if $ \mathop{\rm dim} \Phi = n $, |
| + | then there exists an $ \alpha > 0 $ |
| + | such that for any pocket $ z ^ {n-1} $ |
| + | around $ \Phi $ |
| + | the inequality $ \mu z ^ {n-1} > \alpha $ |
| + | is true (here, $ \alpha _ \Gamma ^ {n-2} z ^ {n-1} > 0 $ |
| + | and $ \alpha _ \Gamma ^ {n-1} z ^ {n-1} = 0 $ |
| + | for any pocket $ z ^ {n-1} $). |
| | | |
| The pocket theorem may be further strengthened using the concept of a zone around a compactum. | | The pocket theorem may be further strengthened using the concept of a zone around a compactum. |
| | | |
− | The zone theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773043.png" /> be a compactum of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773044.png" />. There exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773045.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773046.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773047.png" /> there exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773048.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773049.png" />-dimensional cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773050.png" /> (a zone of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773052.png" /> around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773053.png" />), for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773054.png" /> bounding in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773055.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773057.png" />. Furthermore, for any cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773058.png" /> homologous to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773059.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773060.png" />-neighbourhood of the latter with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773061.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773062.png" /> is valid; for any chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773063.png" /> bounded by the cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773064.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773065.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773066.png" />. | + | The zone theorem. Let $ \Phi \subset \mathbf R ^ {n} $ |
| + | be a compactum of dimension $ r $. |
| + | There exists a $ \gamma > 0 $ |
| + | such that for any $ k = 1 \dots r + 1 $ |
| + | and any $ \epsilon > 0 $ |
| + | there exists in $ \Gamma = \mathbf R ^ {n} \setminus \Phi $ |
| + | an $ ( n - k) $- |
| + | dimensional cycle $ v $( |
| + | a zone of dimension $ n - k $ |
| + | around $ \Phi $), |
| + | for $ k> 1 $ |
| + | bounding in $ \Gamma $, |
| + | for which $ \beta ^ {r-k+ 1} v < \epsilon $, |
| + | $ \tau v < \epsilon $. |
| + | Furthermore, for any cycle $ w $ |
| + | homologous to $ v $ |
| + | in the $ \gamma $- |
| + | neighbourhood of the latter with respect to $ \Gamma $ |
| + | the inequality $ \beta ^ {r-n+ 1} w > \gamma $ |
| + | is valid; for any chain $ x $ |
| + | bounded by the cycle $ v $ |
| + | in $ \Gamma $ |
| + | one has $ \beta ^ {r-n+ 1} x > \gamma $. |
| | | |
− | On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773067.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773068.png" />, then, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773069.png" />, any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773070.png" />-dimensional cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773071.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773072.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773073.png" /> is homologous in its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773074.png" />-neighbourhood (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773075.png" />) to some cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773076.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png" /> arbitrary small. Furthermore, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773078.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773079.png" />, then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773080.png" /> any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773081.png" />-dimensional cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773082.png" />, bounding in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773083.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773084.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773085.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773086.png" />) bounds in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773087.png" /> a chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773088.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773089.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773091.png" />, is the greatest lower bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773092.png" /> for which there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773093.png" />-shift of the vertices of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773094.png" /> by means of which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773095.png" /> becomes degenerate up to dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773096.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773097.png" /> is the greatest lower bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773098.png" /> for which there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773099.png" />-shift of the vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730100.png" /> converting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730101.png" /> to a zero chain. | + | On the other hand, if $ s > r $ |
| + | and if $ k = 1 \dots s + 1 $, |
| + | then, for any $ \gamma > 0 $, |
| + | any $ ( n - k) $- |
| + | dimensional cycle $ z $ |
| + | in $ \Gamma $ |
| + | for which $ \tau z < \gamma $ |
| + | is homologous in its $ \gamma $- |
| + | neighbourhood (with respect to $ \Gamma $) |
| + | to some cycle $ z ^ \prime $ |
| + | with $ \beta ^ {s-k} z ^ \prime $ |
| + | arbitrary small. Furthermore, if $ s > r $ |
| + | and if $ k = 2 \dots s + 1 $, |
| + | then for any $ \gamma > 0 $ |
| + | any $ ( n - k ) $- |
| + | dimensional cycle $ z $, |
| + | bounding in $ \Gamma $, |
| + | for which $ \beta ^ {s-k+ 1} z < \gamma $( |
| + | and $ \tau z < \gamma $ |
| + | if $ s = n - 1 $) |
| + | bounds in $ \Gamma $ |
| + | a chain $ x $ |
| + | with $ \beta ^ {s-n+ 1} x < \gamma $. |
| + | Here $ \beta ^ {p} x $, |
| + | $ p \geq 0 $, |
| + | is the greatest lower bound of those $ \epsilon > 0 $ |
| + | for which there exists an $ \epsilon $- |
| + | shift of the vertices of the chain $ x $ |
| + | by means of which $ x $ |
| + | becomes degenerate up to dimension $ p $; |
| + | $ \tau x $ |
| + | is the greatest lower bound of those $ \epsilon > 0 $ |
| + | for which there exists an $ \epsilon $- |
| + | shift of the vertices of $ x $ |
| + | converting $ x $ |
| + | to a zero chain. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730103.png" />-shift of a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730104.png" /> contained in some Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730105.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730106.png" /> such that the distance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730107.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730108.png" /> is less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730109.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730110.png" />. | + | An $\epsilon$-shift of a subspace $ X $ contained in some Euclidean space $ \mathbf R ^ {m} $ |
| + | is a mapping $ f: X \rightarrow \mathbf R ^ {m} $ |
| + | such that the distance of $ x $ |
| + | to $ f( x) $ |
| + | is less than $ \epsilon $ |
| + | for all $ x \in X $. |
A method for characterizing the dimension of a compactum lying in a Euclidean space $ \mathbf R ^ {n} $
in terms of metric properties of the complementary space. The essential measure of a cycle $ z $
in a compactum $ \Phi \subset \mathbf R ^ {n} $
is taken to be the least upper bound of those $ \epsilon > 0 $
for which it is possible to select a compact support $ \Phi _ {1} \subseteq \Phi $
of the cycle $ z $
such that the cycle is not homologous to zero in $ O ( \Phi _ {1} , \epsilon ) $.
The $ p $-
dimensional homological diameter $ \alpha _ \Gamma ^ {p} z $
of a cycle $ z $
in an open set $ \Gamma = \mathbf R ^ {n} \setminus \Phi $
is the greatest lower bound of the $ p $-
dimensional diameters of the bodies of all cycles that are homologous in $ \Gamma $
to $ z $.
Here, the $ p $-
dimensional diameter $ \alpha ^ {p} X $
of a compactum $ X \subset \mathbf R ^ {n} $
is the greatest lower bound of those $ \epsilon > 0 $
for which there exists a continuous $ \epsilon $-
shift of $ X $
in a $ p $-
dimensional compactum (and thus in a polyhedron).
Any $ ( n - 1 ) $-
dimensional cycle of the open set $ \Gamma = \mathbf R ^ {n} \setminus \Phi $
which is linked with each point of the compactum $ \Phi $
is said to be a pocket around $ \Phi $.
The pocket theorem. Let $ r = \mathop{\rm dim} \Phi \leq n - 1 $.
Then there exists an $ \alpha > 0 $
such that any pocket around $ \Phi $
has $ ( r - 1) $-
dimensional homological diameter larger than $ \alpha $,
while the $ r $-
dimensional homological diameter of any cycle in $ \Gamma $
is zero. Pockets around $ \Phi $
with arbitrary small essential measure always exist in this situation. On the other hand, if $ \mathop{\rm dim} \Phi = n $,
then there exists an $ \alpha > 0 $
such that for any pocket $ z ^ {n-1} $
around $ \Phi $
the inequality $ \mu z ^ {n-1} > \alpha $
is true (here, $ \alpha _ \Gamma ^ {n-2} z ^ {n-1} > 0 $
and $ \alpha _ \Gamma ^ {n-1} z ^ {n-1} = 0 $
for any pocket $ z ^ {n-1} $).
The pocket theorem may be further strengthened using the concept of a zone around a compactum.
The zone theorem. Let $ \Phi \subset \mathbf R ^ {n} $
be a compactum of dimension $ r $.
There exists a $ \gamma > 0 $
such that for any $ k = 1 \dots r + 1 $
and any $ \epsilon > 0 $
there exists in $ \Gamma = \mathbf R ^ {n} \setminus \Phi $
an $ ( n - k) $-
dimensional cycle $ v $(
a zone of dimension $ n - k $
around $ \Phi $),
for $ k> 1 $
bounding in $ \Gamma $,
for which $ \beta ^ {r-k+ 1} v < \epsilon $,
$ \tau v < \epsilon $.
Furthermore, for any cycle $ w $
homologous to $ v $
in the $ \gamma $-
neighbourhood of the latter with respect to $ \Gamma $
the inequality $ \beta ^ {r-n+ 1} w > \gamma $
is valid; for any chain $ x $
bounded by the cycle $ v $
in $ \Gamma $
one has $ \beta ^ {r-n+ 1} x > \gamma $.
On the other hand, if $ s > r $
and if $ k = 1 \dots s + 1 $,
then, for any $ \gamma > 0 $,
any $ ( n - k) $-
dimensional cycle $ z $
in $ \Gamma $
for which $ \tau z < \gamma $
is homologous in its $ \gamma $-
neighbourhood (with respect to $ \Gamma $)
to some cycle $ z ^ \prime $
with $ \beta ^ {s-k} z ^ \prime $
arbitrary small. Furthermore, if $ s > r $
and if $ k = 2 \dots s + 1 $,
then for any $ \gamma > 0 $
any $ ( n - k ) $-
dimensional cycle $ z $,
bounding in $ \Gamma $,
for which $ \beta ^ {s-k+ 1} z < \gamma $(
and $ \tau z < \gamma $
if $ s = n - 1 $)
bounds in $ \Gamma $
a chain $ x $
with $ \beta ^ {s-n+ 1} x < \gamma $.
Here $ \beta ^ {p} x $,
$ p \geq 0 $,
is the greatest lower bound of those $ \epsilon > 0 $
for which there exists an $ \epsilon $-
shift of the vertices of the chain $ x $
by means of which $ x $
becomes degenerate up to dimension $ p $;
$ \tau x $
is the greatest lower bound of those $ \epsilon > 0 $
for which there exists an $ \epsilon $-
shift of the vertices of $ x $
converting $ x $
to a zero chain.
References
[1] | P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian) |
An $\epsilon$-shift of a subspace $ X $ contained in some Euclidean space $ \mathbf R ^ {m} $
is a mapping $ f: X \rightarrow \mathbf R ^ {m} $
such that the distance of $ x $
to $ f( x) $
is less than $ \epsilon $
for all $ x \in X $.