Difference between revisions of "Inversion of a series"
(Importing text file) |
(latex details) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | i0524501.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/I052/I.0502450 Inversion of a series | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
To obtain, for a given power series | To obtain, for a given power series | ||
− | + | $$ \tag{1 } | |
+ | w = f ( z) = \ | ||
+ | \sum_{j=0} ^ \infty | ||
+ | b _ {j} ( z- a ) ^ {j} ,\ \ | ||
+ | b _ {1} \neq 0 , | ||
+ | $$ | ||
+ | |||
+ | a series for the inverse function $ z = \phi ( w) $ | ||
+ | in the form | ||
+ | |||
+ | $$ \tag{2 } | ||
+ | z = \phi ( w) = \ | ||
+ | \sum_{k=0} ^ \infty | ||
+ | a _ {k} ( w - b ) ^ {k} , | ||
+ | $$ | ||
+ | |||
+ | where $ b = f ( a) = b _ {0} $, | ||
+ | $ a _ {0} = a $, | ||
+ | |||
+ | $$ | ||
+ | a _ {k} = \ | ||
+ | |||
+ | \frac{1}{k!} | ||
+ | \ | ||
+ | \lim\limits _ {\zeta \rightarrow a } \ | ||
− | + | \frac{d ^ {k-1} }{d \zeta ^ {k-1} } | |
− | + | \left [ | |
− | + | \frac{\zeta - a }{f ( \zeta ) - b } | |
− | + | \right ] ^ {k} ,\ \ | |
+ | k \geq 1 . | ||
+ | $$ | ||
− | The series (2) is called the inverse of the series (1), or the Lagrange series. The more general problem of finding the expansion of an arbitrary composite analytic function | + | The series (2) is called the inverse of the series (1), or the Lagrange series. The more general problem of finding the expansion of an arbitrary composite analytic function $ F [ \phi ( w) ] $ |
+ | is solved by the [[Bürmann–Lagrange series|Bürmann–Lagrange series]]. If the disc of convergence of (1) is $ | z- a | < \rho $, | ||
+ | then the series (2) converges in the disc $ | w- b | < \delta $, | ||
+ | where $ \delta $ | ||
+ | is the distance of the point $ b $ | ||
+ | from the image of the circle $ | z- a | = \rho $ | ||
+ | under the mapping $ w = f ( z) $. | ||
− | If the function | + | If the function $ w = f ( z) $ |
+ | is expanded as a series of the form | ||
− | + | $$ \tag{3 } | |
+ | w = f ( z) = \ | ||
+ | b + \sum_{j=m} ^ \infty | ||
+ | b _ {j} ( z- a ) ^ {j} ,\ \ | ||
+ | m \geq 2 ,\ \ | ||
+ | b _ {m} \neq 0 , | ||
+ | $$ | ||
− | that is, if | + | that is, if $ a $ |
+ | is a [[critical point]] for $ f ( z) $, | ||
+ | then the inverse function $ z = \phi ( w) $ | ||
+ | has an [[Algebraic branch point|algebraic branch point]] of order $ m- 1 $ | ||
+ | at $ b $, | ||
+ | and inversion of (3) is only possible in the form of a [[Puiseux series|Puiseux series]]: | ||
− | + | $$ | |
+ | z = \phi ( w) = \ | ||
+ | a + \sum_{k=1} ^ \infty | ||
+ | a _ {k} ( w- b ) ^ {k / m } , | ||
+ | $$ | ||
− | + | $$ | |
+ | a _ {k} = | ||
+ | \frac{1}{k ! } | ||
+ | \lim\limits _ {\zeta | ||
+ | \rightarrow a } | ||
+ | \frac{d ^ {k-1} }{d \zeta ^ {k-1} } | ||
+ | \left \{ | ||
+ | \frac{\zeta | ||
+ | - a }{[ f ( \zeta ) - b ] ^ {1 / m } } | ||
+ | \right \} ^ {k} ,\ k \geq 1 . | ||
+ | $$ | ||
− | The problem of inversion of a [[ | + | The problem of inversion of a [[Laurent series]] in negative and positive integer powers of $ z- a $ |
+ | is solved similarly in the case when the series has only finitely many negative (or positive) powers (see [[#References|[1]]]). | ||
− | For analytic functions of several complex variables | + | For analytic functions of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, |
+ | $ n > 1 $, | ||
+ | problems of inversion can be put in various ways. For example, if $ f : \mathbf C ^ {n} \rightarrow \mathbf C ^ {n} $ | ||
+ | is a non-singular (that is, the rank of the Jacobi matrix $ \| \partial f / \partial z _ {k} \| $ | ||
+ | is equal to $ n $) | ||
+ | holomorphic mapping of a neighbourhood of zero in $ \mathbf C ^ {n} $ | ||
+ | into $ \mathbf C ^ {n} $, | ||
+ | $ f ( 0) = 0 $, | ||
+ | then in some neighbourhood of zero there exists an inverse holomorphic function $ \phi $, | ||
+ | which can be described in the form of a multi-dimensional Bürmann–Lagrange series (see [[#References|[3]]]). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.E. Soltan, "The expansion of holomorphic functions in multi-dimensional Bürmann–Lagrange series" , ''Holomorphic functions of several complex variables'' , Krasnoyarsk (1972) pp. 129–137; 212 (In Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.E. Soltan, "The expansion of holomorphic functions in multi-dimensional Bürmann–Lagrange series" , ''Holomorphic functions of several complex variables'' , Krasnoyarsk (1972) pp. 129–137; 212 (In Russian)</TD></TR> | ||
+ | </table> |
Latest revision as of 20:40, 16 January 2024
To obtain, for a given power series
$$ \tag{1 } w = f ( z) = \ \sum_{j=0} ^ \infty b _ {j} ( z- a ) ^ {j} ,\ \ b _ {1} \neq 0 , $$
a series for the inverse function $ z = \phi ( w) $ in the form
$$ \tag{2 } z = \phi ( w) = \ \sum_{k=0} ^ \infty a _ {k} ( w - b ) ^ {k} , $$
where $ b = f ( a) = b _ {0} $, $ a _ {0} = a $,
$$ a _ {k} = \ \frac{1}{k!} \ \lim\limits _ {\zeta \rightarrow a } \ \frac{d ^ {k-1} }{d \zeta ^ {k-1} } \left [ \frac{\zeta - a }{f ( \zeta ) - b } \right ] ^ {k} ,\ \ k \geq 1 . $$
The series (2) is called the inverse of the series (1), or the Lagrange series. The more general problem of finding the expansion of an arbitrary composite analytic function $ F [ \phi ( w) ] $ is solved by the Bürmann–Lagrange series. If the disc of convergence of (1) is $ | z- a | < \rho $, then the series (2) converges in the disc $ | w- b | < \delta $, where $ \delta $ is the distance of the point $ b $ from the image of the circle $ | z- a | = \rho $ under the mapping $ w = f ( z) $.
If the function $ w = f ( z) $ is expanded as a series of the form
$$ \tag{3 } w = f ( z) = \ b + \sum_{j=m} ^ \infty b _ {j} ( z- a ) ^ {j} ,\ \ m \geq 2 ,\ \ b _ {m} \neq 0 , $$
that is, if $ a $ is a critical point for $ f ( z) $, then the inverse function $ z = \phi ( w) $ has an algebraic branch point of order $ m- 1 $ at $ b $, and inversion of (3) is only possible in the form of a Puiseux series:
$$ z = \phi ( w) = \ a + \sum_{k=1} ^ \infty a _ {k} ( w- b ) ^ {k / m } , $$
$$ a _ {k} = \frac{1}{k ! } \lim\limits _ {\zeta \rightarrow a } \frac{d ^ {k-1} }{d \zeta ^ {k-1} } \left \{ \frac{\zeta - a }{[ f ( \zeta ) - b ] ^ {1 / m } } \right \} ^ {k} ,\ k \geq 1 . $$
The problem of inversion of a Laurent series in negative and positive integer powers of $ z- a $ is solved similarly in the case when the series has only finitely many negative (or positive) powers (see [1]).
For analytic functions of several complex variables $ z = ( z _ {1} \dots z _ {n} ) $, $ n > 1 $, problems of inversion can be put in various ways. For example, if $ f : \mathbf C ^ {n} \rightarrow \mathbf C ^ {n} $ is a non-singular (that is, the rank of the Jacobi matrix $ \| \partial f / \partial z _ {k} \| $ is equal to $ n $) holomorphic mapping of a neighbourhood of zero in $ \mathbf C ^ {n} $ into $ \mathbf C ^ {n} $, $ f ( 0) = 0 $, then in some neighbourhood of zero there exists an inverse holomorphic function $ \phi $, which can be described in the form of a multi-dimensional Bürmann–Lagrange series (see [3]).
References
[1] | A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian) |
[2] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2 |
[3] | E.E. Soltan, "The expansion of holomorphic functions in multi-dimensional Bürmann–Lagrange series" , Holomorphic functions of several complex variables , Krasnoyarsk (1972) pp. 129–137; 212 (In Russian) |
Inversion of a series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inversion_of_a_series&oldid=16637