Difference between revisions of "Hadamard variational formula"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 20: | Line 20: | ||
- \sum _ { k = 1 } ^ { n } \epsilon _ {k} \int\limits _ { 0 } ^ { {l _ k } } | - \sum _ { k = 1 } ^ { n } \epsilon _ {k} \int\limits _ { 0 } ^ { {l _ k } } | ||
\frac{ | \frac{ | ||
− | \partial g ( \phi _ {k} ( s ) , z ) }{\partial n ^ {( | + | \partial g ( \phi _ {k} ( s ) , z ) }{\partial n ^ {(k)}} |
\frac{ | \frac{ | ||
\partial g ( \phi _ {k} ( s ) , \zeta ) }{\partial n | \partial g ( \phi _ {k} ( s ) , \zeta ) }{\partial n | ||
− | ^ {( | + | ^ {(k)} } |
\phi _ {k} ( s ) ds + O ( \epsilon ^ {2} ) | \phi _ {k} ( s ) ds + O ( \epsilon ^ {2} ) | ||
$$ | $$ | ||
Line 39: | Line 39: | ||
$ 0 \leq s \leq l _ {k} $; | $ 0 \leq s \leq l _ {k} $; | ||
2) the numbers $ \epsilon _ {k} > 0 $ | 2) the numbers $ \epsilon _ {k} > 0 $ | ||
− | are so small that the ends of the segments of the interior normals | + | are so small that the ends of the segments of the interior normals $n^{(k)} $ |
to $ \Gamma _ {k} $ | to $ \Gamma _ {k} $ | ||
of length $ \epsilon _ {k} \phi _ {k} ( s ) $ | of length $ \epsilon _ {k} \phi _ {k} ( s ) $ |
Latest revision as of 20:37, 16 January 2024
The formula
$$ g ^ {*} ( z , \zeta ) = g ( z , \zeta ) + $$
$$ - \sum _ { k = 1 } ^ { n } \epsilon _ {k} \int\limits _ { 0 } ^ { {l _ k } } \frac{ \partial g ( \phi _ {k} ( s ) , z ) }{\partial n ^ {(k)}} \frac{ \partial g ( \phi _ {k} ( s ) , \zeta ) }{\partial n ^ {(k)} } \phi _ {k} ( s ) ds + O ( \epsilon ^ {2} ) $$
for the Green function $ g( z, \zeta ) $ of an $ n $- connected domain $ G $( $ n = 1, 2 , . . . $) in the complex $ z $- plane. Hadamard's variational formula is applicable if: 1) the boundary components $ \Gamma _ {k} = \{ {z } : {z = \phi _ {k} ( s) } \} $ of the domain $ G $ are twice-differentiable closed Jordan curves, where $ s $ is the arc length on $ \Gamma _ {k} $, $ 0 \leq s \leq l _ {k} $; 2) the numbers $ \epsilon _ {k} > 0 $ are so small that the ends of the segments of the interior normals $n^{(k)} $ to $ \Gamma _ {k} $ of length $ \epsilon _ {k} \phi _ {k} ( s ) $ lying in $ G $ form continuously-differentiable curves, bounding an $ n $- connected domain $ G ^ {*} $, $ \overline{ {G ^ {*} }}\; \subset G $; and 3) $ \zeta $ is a fixed point in $ G ^ {*} $. Hadamard's variational formula represents the Green function $ g ^ {*} ( z, \zeta ) $ of the domain $ G ^ {*} $ by $ g( z, \zeta ) $ with a uniform estimate $ O ( \epsilon ^ {2} ) $, $ \epsilon = \max \{ \epsilon _ {k} , 0\leq k \leq n \} $, of the remainder term in the direct product of the domain $ G ^ {*} $ and an arbitrary compact set in $ G $. Hadamard's variational formula can also be used for the Green function of a finite Riemann surface with boundary.
The formula was proposed by J. Hadamard [1].
References
[1] | J. Hadamard, "Memoire sur le problème d'analyse relatif a l'équilibre des plagues élastiques eucastrées" Mém. prés. par divers savants à l'Acad. Sci. , 33 (1907) (Also: Oeuvres, Vol. II, C.N.R.S. (1968), pp. 515–631) |
[2] | M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954) |
Comments
For a proof of Hadamard's variational formula under minimal hypotheses, plus further references, see [a1].
References
[a1] | S.E. Warschawski, "On Hadamard's variation formula for Green's function" J. Math. Mech. , 9 (1960) pp. 497–511 |
Hadamard variational formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hadamard_variational_formula&oldid=47159