Difference between revisions of "Locally trivial fibre bundle"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0605301.png | ||
+ | $#A+1 = 19 n = 0 | ||
+ | $#C+1 = 19 : ~/encyclopedia/old_files/data/L060/L.0600530 Locally trivial fibre bundle | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | where | + | A fibre bundle (cf. [[Fibre space|Fibre space]]) $ \pi : X \rightarrow B $ |
+ | with fibre $ F $ | ||
+ | such that for any point of the base $ b \in B $ | ||
+ | there is a neighbourhood $ U \ni b $ | ||
+ | and a homeomorphism $ \phi _ {U} : U \times F \rightarrow \pi ^ {-1} ( U) $ | ||
+ | such that $ \pi \phi _ {U} ( u, f ) = u $, | ||
+ | where $ u \in U $, | ||
+ | $ f \in F $. | ||
+ | The mapping $ h _ {U} = \phi _ {U} ^ {-1} $ | ||
+ | is called a chart of the locally trivial bundle. The totality of charts $ \{ h _ {U} \} $ | ||
+ | associated with a covering of the base $ \{ U \} $ | ||
+ | forms the atlas of the locally trivial bundle. For example, a [[Principal fibre bundle|principal fibre bundle]] with a locally compact space and a Lie group $ G $ | ||
+ | is a locally trivial fibre bundle, and any chart $ h _ {U} $ | ||
+ | satisfies the relation | ||
+ | |||
+ | $$ | ||
+ | h _ {U} ( g x ) = g h _ {U} ( x) ,\ \ | ||
+ | x \in \pi ^ {-1} ( U) , | ||
+ | $$ | ||
+ | |||
+ | where $ G $ | ||
+ | acts on $ G \times U $ | ||
+ | according to the formula $ g ( g ^ \prime , u ) = ( g g ^ \prime , u ) $. | ||
+ | For any locally trivial fibre bundle $ \pi : X \rightarrow B $ | ||
+ | and continuous mapping $ f : B _ {1} \rightarrow B $ | ||
+ | the [[induced fibre bundle]] is locally trivial. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR></table> |
Latest revision as of 20:28, 16 January 2024
A fibre bundle (cf. Fibre space) $ \pi : X \rightarrow B $
with fibre $ F $
such that for any point of the base $ b \in B $
there is a neighbourhood $ U \ni b $
and a homeomorphism $ \phi _ {U} : U \times F \rightarrow \pi ^ {-1} ( U) $
such that $ \pi \phi _ {U} ( u, f ) = u $,
where $ u \in U $,
$ f \in F $.
The mapping $ h _ {U} = \phi _ {U} ^ {-1} $
is called a chart of the locally trivial bundle. The totality of charts $ \{ h _ {U} \} $
associated with a covering of the base $ \{ U \} $
forms the atlas of the locally trivial bundle. For example, a principal fibre bundle with a locally compact space and a Lie group $ G $
is a locally trivial fibre bundle, and any chart $ h _ {U} $
satisfies the relation
$$ h _ {U} ( g x ) = g h _ {U} ( x) ,\ \ x \in \pi ^ {-1} ( U) , $$
where $ G $ acts on $ G \times U $ according to the formula $ g ( g ^ \prime , u ) = ( g g ^ \prime , u ) $. For any locally trivial fibre bundle $ \pi : X \rightarrow B $ and continuous mapping $ f : B _ {1} \rightarrow B $ the induced fibre bundle is locally trivial.
References
[1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) |
[2] | N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951) |
[3] | S.-T. Hu, "Homotopy theory" , Acad. Press (1959) |
[4] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) |
Locally trivial fibre bundle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Locally_trivial_fibre_bundle&oldid=13769