Namespaces
Variants
Actions

Difference between revisions of "Fourier-Stieltjes transform"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
 
Line 20: Line 20:
 
\frac{1}{\sqrt {2 \pi } }
 
\frac{1}{\sqrt {2 \pi } }
 
  }
 
  }
\int\limits _ {- \infty } ^ { {+ \infty }
+
\int\limits _ {- \infty } ^ {+\infty }
 
e  ^ {-} ixy  dF ( y)
 
e  ^ {-} ixy  dF ( y)
 
$$
 
$$
Line 47: Line 47:
 
\frac{1}{\sqrt {2 \pi } }
 
\frac{1}{\sqrt {2 \pi } }
 
  }
 
  }
\int\limits _ {- \infty } ^ { {+ \infty }
+
\int\limits _ {- \infty } ^ {+\infty }
 
\phi ( \xi )
 
\phi ( \xi )
  
Line 85: Line 85:
  
 
$$  
 
$$  
\Phi ( x) = \
+
\Phi(x) = \int\limits_{-\infty}^{+\infty} e^{ixy} dP(y)
\int\limits _ {- \infty } ^ { {+ \infty }
 
e ^ {ixy} dP ( y)
 
 
$$
 
$$
  
Line 99: Line 97:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Bochner,  "Lectures on Fourier integrals" , Princeton Univ. Press  (1959)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR>
+
<table>
<TR><TD valign="top">[3]</TD> <TD valign="top">  B.V. Gnedenko,  [[Gnedenko, "A course in the theory of probability"|"The theory of probability"]], Chelsea, reprint  (1962)  (Translated from Russian)</TD></TR></table>
+
<TR><TD valign="top">[1]</TD> <TD valign="top">  S. Bochner,  "Lectures on Fourier integrals" , Princeton Univ. Press  (1959)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  B.V. Gnedenko,  [[Gnedenko, "A course in the theory of probability"|"The theory of probability"]], Chelsea, reprint  (1962)  (Translated from Russian)</TD></TR>
 +
</table>

Latest revision as of 20:16, 16 January 2024


One of the integral transforms (cf. Integral transform) related to the Fourier transform. Let the function $ F $ have bounded variation on $ (- \infty , + \infty ) $. The function

$$ \tag{* } \phi ( x) = \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \infty } ^ {+\infty } e ^ {-} ixy dF ( y) $$

is called the Fourier–Stieltjes transform of $ F $. The function $ \phi $ determined by the integral (*) is bounded and continuous. Every periodic function $ \phi $ that can be expanded in an absolutely-convergent Fourier series $ \sum _ {- \infty } ^ {+ \infty } a _ {n} e ^ {inx} $ can be written as an integral (*) with $ F ( x) = \sum _ {n \leq x } a _ {n} $.

Formula (*) can be inverted: If $ F $ has bounded variation and if

$$ F ^ \bullet ( x) = \ { \frac{F ( x + 0) + F ( x - 0) }{2} } , $$

then

$$ F ^ \bullet ( x) - F ^ \bullet ( 0) = \ { \frac{1}{\sqrt {2 \pi } } } \int\limits _ {- \infty } ^ {+\infty } \phi ( \xi ) \frac{e ^ {i \xi x } - 1 }{i \xi } \ d \xi ,\ \ x \in (- \infty , + \infty ), $$

where the integral is taken to mean the principal value at $ \infty $.

If one only allows non-decreasing functions of bounded variation as the function $ F $ in formula (*), then the set of continuous functions $ \phi $ thus obtained is completely characterized by the property: For any system of real numbers $ t _ {1} \dots t _ {n} $,

$$ \sum _ {i, j = 1 } ^ { n } \phi ( t _ {i} - t _ {j} ) \xi _ {i} \overline \xi \; _ {j} \geq 0, $$

whatever the complex numbers $ \xi _ {1} \dots \xi _ {n} $( the Bochner–Khinchin theorem). Such functions are called positive definite. The Fourier–Stieltjes transform is extensively applied in probability theory, where the non-decreasing function

$$ P ( x) = \ { \frac{1}{\sqrt {2 \pi } } } F ( x) $$

is subjected to the additional restrictions $ \lim\limits _ {x \rightarrow - \infty } P ( x) = 0 $, $ \lim\limits _ {x \rightarrow + \infty } P ( x) = 1 $ and $ P $ is continuous on the left; it is called a distribution, and

$$ \Phi(x) = \int\limits_{-\infty}^{+\infty} e^{ixy} dP(y) $$

is called the characteristic function (of the distribution $ P $). The Bochner–Khinchin theorem then expresses a necessary and sufficient condition for a continuous function $ \Phi $( for which $ \Phi ( 0) = 1 $) to be the characteristic function of a certain distribution.

The Fourier–Stieltjes transform has also been developed in the $ n $- dimensional case.

References

[1] S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)
[2] A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988)
[3] B.V. Gnedenko, "The theory of probability", Chelsea, reprint (1962) (Translated from Russian)
How to Cite This Entry:
Fourier-Stieltjes transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier-Stieltjes_transform&oldid=46962
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article