Difference between revisions of "Poisson summation formula"
(Importing text file) |
m (latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0733601.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/P073/P.0703360 Poisson summation formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The formula | The formula | ||
− | + | $$ | |
+ | \sum _ {k = - \infty } ^ { +\infty } | ||
+ | g ( 2 k \pi ) = \ | ||
+ | \sum _ {k = - \infty } ^ { +\infty } | ||
+ | |||
+ | \frac{1}{2 \pi } | ||
+ | |||
+ | \int\limits _ {- \infty } ^ { +\infty } | ||
+ | g ( x) e ^ {- i k x } d x . | ||
+ | $$ | ||
− | The Poisson summation formula holds if, for example, the function | + | The Poisson summation formula holds if, for example, the function $ g $ |
+ | is absolutely integrable on the interval $ ( - \infty , + \infty ) $, | ||
+ | has bounded variation and $ 2 g ( x) = g ( x + 0 ) + g ( x - 0 ) $. | ||
+ | The Poisson summation formula can also be written in the form | ||
− | + | $$ | |
+ | \sqrt {a } \sum _ {k = - \infty } ^ { +\infty } g ( a k ) = \ | ||
+ | \sqrt {b } \sum _ {k = - \infty } ^ { +\infty } \chi ( b k ) , | ||
+ | $$ | ||
− | where | + | where $ a $ |
+ | and $ b $ | ||
+ | are any two positive numbers satisfying the condition $ a b = 2 \pi $, | ||
+ | and $ \chi $ | ||
+ | is the [[Fourier transform|Fourier transform]] of the function $ g $: | ||
− | + | $$ | |
+ | \chi ( u) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ {+ \infty } g(x) e ^ {- i u x } d x . | ||
+ | $$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR> | ||
+ | </table> |
Latest revision as of 20:15, 16 January 2024
The formula
$$ \sum _ {k = - \infty } ^ { +\infty } g ( 2 k \pi ) = \ \sum _ {k = - \infty } ^ { +\infty } \frac{1}{2 \pi } \int\limits _ {- \infty } ^ { +\infty } g ( x) e ^ {- i k x } d x . $$
The Poisson summation formula holds if, for example, the function $ g $ is absolutely integrable on the interval $ ( - \infty , + \infty ) $, has bounded variation and $ 2 g ( x) = g ( x + 0 ) + g ( x - 0 ) $. The Poisson summation formula can also be written in the form
$$ \sqrt {a } \sum _ {k = - \infty } ^ { +\infty } g ( a k ) = \ \sqrt {b } \sum _ {k = - \infty } ^ { +\infty } \chi ( b k ) , $$
where $ a $ and $ b $ are any two positive numbers satisfying the condition $ a b = 2 \pi $, and $ \chi $ is the Fourier transform of the function $ g $:
$$ \chi ( u) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ {+ \infty } g(x) e ^ {- i u x } d x . $$
References
[1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
[2] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
Poisson summation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_summation_formula&oldid=13421