Difference between revisions of "Spectral density, estimator of the"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | s0863801.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/S086/S.0806380 Spectral density, estimator of the | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A function of the observed values $ X ( 1) \dots X ( N) $ | |
+ | of a discrete-time [[Stationary stochastic process|stationary stochastic process]], used as an estimator of the [[Spectral density|spectral density]] $ f ( \lambda ) $. | ||
+ | As an estimator of the spectral density one often uses quadratic forms | ||
− | + | $$ | |
+ | \sum _ {s , t = 1 } ^ { N } | ||
+ | b _ {s,t} ^ {(N)} X ( s) X ( t) , | ||
+ | $$ | ||
+ | |||
+ | where the $ b _ {s,t} ^ {(N)} $ | ||
+ | are complex coefficients (depending on $ \lambda $). | ||
+ | It can be shown that the asymptotic behaviour as $ N \rightarrow \infty $ | ||
+ | of the first two moments of an estimator of the spectral density is satisfactory, in general, if one considers only the subclass of quadratic forms such that $ b _ {s _ {1} , t _ {1} } ^ {(N)} = b _ {s _ {2} , t _ {2} } ^ {(N)} $ | ||
+ | when $ s _ {1} - t _ {1} = s _ {2} - t _ {2} $. | ||
+ | This enables one to restrict attention to estimators of the spectral density of the form | ||
+ | |||
+ | $$ | ||
+ | \widehat{f} _ {N} ( \lambda ) = | ||
+ | \frac{1}{2 \pi } \sum _ {t = - N + 1 } ^ {N-1} e ^ {i t \lambda } b _ {N} ( t) B _ {N} ( t) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | B _ {N} ( t) = | ||
+ | \frac{1}{N} \sum _{s=1}^ { {N } - | t | } | ||
+ | X ( s) X ( s + | t | ) | ||
+ | $$ | ||
− | is a sample estimator of the covariance function of the stationary process | + | is a sample estimator of the covariance function of the stationary process $ X ( t) $ |
+ | and the $ b _ {N} ( t) $ | ||
+ | are suitably chosen weights. The estimator $ \widehat{f} _ {N} ( \lambda ) $ | ||
+ | can be written as | ||
− | + | $$ | |
+ | \widehat{f} _ {N} ( \lambda ) = \ | ||
+ | \int\limits _ {- \pi } ^ \pi | ||
+ | \Phi _ {N} ( x) I _ {N} ( x + \lambda ) d x , | ||
+ | $$ | ||
− | where | + | where $ I _ {N} ( x) $ |
+ | is the [[Periodogram|periodogram]] and $ \Phi _ {N} ( x) $ | ||
+ | is some continuous even function with $ 2N- 1 $ | ||
+ | of its Fourier coefficients specified: | ||
− | + | $$ | |
+ | b _ {N} ( t) = \int\limits _ {- \pi } ^ \pi | ||
+ | \Phi _ {N} ( x) e ^ {i t x } d x ,\ \ | ||
+ | t = - N + 1 \dots N - 1 . | ||
+ | $$ | ||
− | The function | + | The function $ \Phi _ {N} ( x) $ |
+ | is called a [[Spectral window|spectral window]]; one usually considers spectral windows of the form | ||
− | + | $$ | |
+ | \Phi _ {N} ( x) = A _ {N} \Phi ( A _ {N} x ) , | ||
+ | $$ | ||
− | where | + | where $ \Phi ( x) $ |
+ | is some continuous function on $ ( - \infty , \infty ) $ | ||
+ | such that | ||
− | + | $$ | |
+ | \int\limits _ {- \infty } ^ \infty \Phi ( x) d x = 1 , | ||
+ | $$ | ||
− | and | + | and $ A _ {N} \rightarrow \infty $ |
+ | as $ N \rightarrow \infty $, | ||
+ | but $ A _ {N} N ^ {-1} \rightarrow 0 $. | ||
+ | Similarly, one considers coefficients $ b _ {N} ( t) $ | ||
+ | of the form | ||
− | + | $$ | |
+ | b _ {N} ( t) = K ( A _ {N} ^ {-1} t ) | ||
+ | $$ | ||
− | and a function | + | and a function $ K ( x) $, |
+ | called a lag window or covariance window. Under weak smoothness restrictions on the spectral density $ f ( \lambda ) $, | ||
+ | or assuming that $ X ( t) $ | ||
+ | is mixing, it is possible to prove that for a wide class of spectral or covariance windows the estimator $ \widehat{f} _ {N} ( \lambda ) $ | ||
+ | is asymptotically unbiased and consistent. | ||
− | In the case of a multi-dimensional stochastic process, estimation of the elements of the matrix of spectral densities | + | In the case of a multi-dimensional stochastic process, estimation of the elements of the matrix of spectral densities $ f _ {k,l} ( \lambda ) $ |
+ | proceeds in a similar way using the corresponding periodogram $ I _ {N} ^ {( k , l ) } ( \lambda ) $. | ||
+ | Instead of an estimator of the spectral density in the form of a quadratic form in the observations, one often assumes that the spectral density depends in a particular way on a finite number of parameters, and then one seeks estimators based on the observations of the parameters involved in this expression for the spectral density (see [[Maximum-entropy spectral estimator|Maximum-entropy spectral estimator]]; [[Spectral estimator, parametric|Spectral estimator, parametric]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.R. Brillinger, "Time series. Data analysis and theory" , Holt, Rinehart & Winston (1975) {{MR|0443257}} {{ZBL|0321.62004}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.J. Hannan, "Multiple time series" , Wiley (1972) {{MR|0279952}} {{ZBL|0279.62025}} {{ZBL|0211.49804}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> T.M. Anderson, "Statistical analysis of time series" , Wiley (1971) {{MR|0283939}} {{ZBL|0225.62108}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.R. Brillinger, "Time series. Data analysis and theory" , Holt, Rinehart & Winston (1975) {{MR|0443257}} {{ZBL|0321.62004}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.J. Hannan, "Multiple time series" , Wiley (1972) {{MR|0279952}} {{ZBL|0279.62025}} {{ZBL|0211.49804}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> T.M. Anderson, "Statistical analysis of time series" , Wiley (1971) {{MR|0283939}} {{ZBL|0225.62108}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.E.P. Box, G.M. Jenkins, "Time series analysis. Forecasting and control" , Holden-Day (1960) {{MR|0436499}} {{MR|0353595}} {{MR|0353594}} {{MR|0272138}} {{ZBL|1154.62062}} {{ZBL|0858.62072}} {{ZBL|0363.62069}} {{ZBL|0284.62059}} {{ZBL|0276.62080}} {{ZBL|0249.62009}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.E. Caines, "Linear stochastic systems" , Wiley (1988) {{MR|0944080}} {{ZBL|0658.93003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K.O. Dzhaparidze, "Parameter estimation and hypothesis testing in spectral analysis of stationary time series" , Springer (1986) {{MR|0775857}} {{MR|0812272}} {{ZBL|0584.62157}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L. Ljung, "System identification theory for the user" , Prentice-Hall (1987) {{MR|1157156}} {{ZBL|0615.93004}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.E.P. Box, G.M. Jenkins, "Time series analysis. Forecasting and control" , Holden-Day (1960) {{MR|0436499}} {{MR|0353595}} {{MR|0353594}} {{MR|0272138}} {{ZBL|1154.62062}} {{ZBL|0858.62072}} {{ZBL|0363.62069}} {{ZBL|0284.62059}} {{ZBL|0276.62080}} {{ZBL|0249.62009}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.E. Caines, "Linear stochastic systems" , Wiley (1988) {{MR|0944080}} {{ZBL|0658.93003}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> K.O. Dzhaparidze, "Parameter estimation and hypothesis testing in spectral analysis of stationary time series" , Springer (1986) {{MR|0775857}} {{MR|0812272}} {{ZBL|0584.62157}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L. Ljung, "System identification theory for the user" , Prentice-Hall (1987) {{MR|1157156}} {{ZBL|0615.93004}} </TD></TR></table> |
Latest revision as of 19:58, 16 January 2024
A function of the observed values $ X ( 1) \dots X ( N) $
of a discrete-time stationary stochastic process, used as an estimator of the spectral density $ f ( \lambda ) $.
As an estimator of the spectral density one often uses quadratic forms
$$ \sum _ {s , t = 1 } ^ { N } b _ {s,t} ^ {(N)} X ( s) X ( t) , $$
where the $ b _ {s,t} ^ {(N)} $ are complex coefficients (depending on $ \lambda $). It can be shown that the asymptotic behaviour as $ N \rightarrow \infty $ of the first two moments of an estimator of the spectral density is satisfactory, in general, if one considers only the subclass of quadratic forms such that $ b _ {s _ {1} , t _ {1} } ^ {(N)} = b _ {s _ {2} , t _ {2} } ^ {(N)} $ when $ s _ {1} - t _ {1} = s _ {2} - t _ {2} $. This enables one to restrict attention to estimators of the spectral density of the form
$$ \widehat{f} _ {N} ( \lambda ) = \frac{1}{2 \pi } \sum _ {t = - N + 1 } ^ {N-1} e ^ {i t \lambda } b _ {N} ( t) B _ {N} ( t) , $$
where
$$ B _ {N} ( t) = \frac{1}{N} \sum _{s=1}^ { {N } - | t | } X ( s) X ( s + | t | ) $$
is a sample estimator of the covariance function of the stationary process $ X ( t) $ and the $ b _ {N} ( t) $ are suitably chosen weights. The estimator $ \widehat{f} _ {N} ( \lambda ) $ can be written as
$$ \widehat{f} _ {N} ( \lambda ) = \ \int\limits _ {- \pi } ^ \pi \Phi _ {N} ( x) I _ {N} ( x + \lambda ) d x , $$
where $ I _ {N} ( x) $ is the periodogram and $ \Phi _ {N} ( x) $ is some continuous even function with $ 2N- 1 $ of its Fourier coefficients specified:
$$ b _ {N} ( t) = \int\limits _ {- \pi } ^ \pi \Phi _ {N} ( x) e ^ {i t x } d x ,\ \ t = - N + 1 \dots N - 1 . $$
The function $ \Phi _ {N} ( x) $ is called a spectral window; one usually considers spectral windows of the form
$$ \Phi _ {N} ( x) = A _ {N} \Phi ( A _ {N} x ) , $$
where $ \Phi ( x) $ is some continuous function on $ ( - \infty , \infty ) $ such that
$$ \int\limits _ {- \infty } ^ \infty \Phi ( x) d x = 1 , $$
and $ A _ {N} \rightarrow \infty $ as $ N \rightarrow \infty $, but $ A _ {N} N ^ {-1} \rightarrow 0 $. Similarly, one considers coefficients $ b _ {N} ( t) $ of the form
$$ b _ {N} ( t) = K ( A _ {N} ^ {-1} t ) $$
and a function $ K ( x) $, called a lag window or covariance window. Under weak smoothness restrictions on the spectral density $ f ( \lambda ) $, or assuming that $ X ( t) $ is mixing, it is possible to prove that for a wide class of spectral or covariance windows the estimator $ \widehat{f} _ {N} ( \lambda ) $ is asymptotically unbiased and consistent.
In the case of a multi-dimensional stochastic process, estimation of the elements of the matrix of spectral densities $ f _ {k,l} ( \lambda ) $ proceeds in a similar way using the corresponding periodogram $ I _ {N} ^ {( k , l ) } ( \lambda ) $. Instead of an estimator of the spectral density in the form of a quadratic form in the observations, one often assumes that the spectral density depends in a particular way on a finite number of parameters, and then one seeks estimators based on the observations of the parameters involved in this expression for the spectral density (see Maximum-entropy spectral estimator; Spectral estimator, parametric).
References
[1] | D.R. Brillinger, "Time series. Data analysis and theory" , Holt, Rinehart & Winston (1975) MR0443257 Zbl 0321.62004 |
[2] | E.J. Hannan, "Multiple time series" , Wiley (1972) MR0279952 Zbl 0279.62025 Zbl 0211.49804 |
[3] | T.M. Anderson, "Statistical analysis of time series" , Wiley (1971) MR0283939 Zbl 0225.62108 |
Comments
References
[a1] | G.E.P. Box, G.M. Jenkins, "Time series analysis. Forecasting and control" , Holden-Day (1960) MR0436499 MR0353595 MR0353594 MR0272138 Zbl 1154.62062 Zbl 0858.62072 Zbl 0363.62069 Zbl 0284.62059 Zbl 0276.62080 Zbl 0249.62009 |
[a2] | P.E. Caines, "Linear stochastic systems" , Wiley (1988) MR0944080 Zbl 0658.93003 |
[a3] | K.O. Dzhaparidze, "Parameter estimation and hypothesis testing in spectral analysis of stationary time series" , Springer (1986) MR0775857 MR0812272 Zbl 0584.62157 |
[a4] | L. Ljung, "System identification theory for the user" , Prentice-Hall (1987) MR1157156 Zbl 0615.93004 |
Spectral density, estimator of the. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_density,_estimator_of_the&oldid=24129