Namespaces
Variants
Actions

Difference between revisions of "Schwarz symmetric derivative"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
''of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835801.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835802.png" />''
+
<!--
 +
s0835801.png
 +
$#A+1 = 11 n = 1
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/S083/S.0803580 Schwarz symmetric derivative
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''of a function  $  f $
 +
at a point $  x _ {0} $''
  
 
The value
 
The value
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835803.png" /></td> </tr></table>
+
$$
 +
D  ^ {2} f( x _ {0} )  = \lim\limits _ {h \rightarrow 0 } 
 +
\frac{f( x _ {0} + h)- 2f( x _ {0} )+ f( x _ {0} - h) }{h  ^ {2} }
 +
.
 +
$$
  
It is sometimes called the [[Riemann derivative|Riemann derivative]] or the second symmetric derivative. For the first time introduced by B. Riemann in 1854 (see [[#References|[2]]]); it was studied by H.A. Schwarz [[#References|[1]]]. More generally, the symmetric derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835805.png" /> is also called a Schwarz symmetric derivative:
+
It is sometimes called the [[Riemann derivative]] or the second symmetric derivative. For the first time introduced by B. Riemann in 1854 (see [[#References|[2]]]); it was studied by H.A. Schwarz [[#References|[1]]]. More generally, the symmetric derivative of order $  n $
 +
is also called a Schwarz symmetric derivative:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835806.png" /></td> </tr></table>
+
$$
 +
D  ^ {n} f( x)  = \lim\limits _ {h \rightarrow 0
 +
\frac{\Delta _ {h}  ^ {n} f( x) }{h  ^ {n} }
 +
=
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835807.png" /></td> </tr></table>
+
$$
 +
= \
 +
\lim\limits _ {h \rightarrow 0 } 
 +
\frac{\sum_{k=0}^ { n }  \left
 +
( \begin{array}{c}
 +
n \\
 +
k
 +
\end{array}
 +
\right ) (- 1)  ^ {k} f ( x + ( n- 2k ) h / 2 ) }{h  ^ {n} }
 +
.
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.A. Schwarz,  "Beweis eines für die Theorie der trigonometrischen Reihen in Betracht kommenden Hülfssatzes" , ''Gesammelte Math. Abhandlungen'' , Chelsea, reprint  (1972)  pp. 341–343</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B. Riemann,  "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe"  H. Weber (ed.) , ''B. Riemann's Gesammelte Mathematische Werke'' , Dover, reprint  (1953)  pp. 227–271  ((Original: Göttinger Akad. Abh. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835808.png" /> (1868)))</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.P. Natanson,  "Theory of functions of a real variable" , '''1–2''' , F. Ungar  (1955–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H.A. Schwarz,  "Beweis eines für die Theorie der trigonometrischen Reihen in Betracht kommenden Hülfssatzes" , ''Gesammelte Math. Abhandlungen'' , Chelsea, reprint  (1972)  pp. 341–343</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B. Riemann,  "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe"  H. Weber (ed.) , ''B. Riemann's Gesammelte Mathematische Werke'' , Dover, reprint  (1953)  pp. 227–271  ((Original: Göttinger Akad. Abh. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835808.png" /> (1868)))</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I.P. Natanson,  "Theory of functions of a real variable" , '''1–2''' , F. Ungar  (1955–1961)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.K. [N.K. Bari] Bary,  "A treatise on trigonometric series" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR></table>
  
 +
====Comments====
 +
The name general derivative is also used for this notion. A natural approach is to start with the central difference  $  f( x _ {0} + h/2 ) - f( x _ {0} - h/2) $,
 +
and to define the first symmetric derivative as
  
 +
$$
 +
Df( x _ {0} )  =  \lim\limits _ {h \rightarrow 0 } \
  
====Comments====
+
\frac{f( x _ {0} + h/2)- f( x _ {0} - h/2) }{h}
The name general derivative is also used for this notion. A natural approach is to start with the central difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s0835809.png" />, and to define the first symmetric derivative as
+
  = \
 +
\lim\limits _ {h \rightarrow 0 } \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s08358010.png" /></td> </tr></table>
+
\frac{\Delta _ {h} f ( x _ {0} ) }{h}
 +
,
 +
$$
  
and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s08358011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s08358012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083580/s08358013.png" />.
+
and then $  D  ^ {n} = D( D  ^ {n-1} ) $,  
 +
$  n \geq  1 $,  
 +
$  D  ^ {0} f = f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Real and complex analysis" , McGraw-Hill  (1974)  pp. 24</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Real and complex analysis" , McGraw-Hill  (1974)  pp. 24</TD></TR></table>

Latest revision as of 20:00, 15 January 2024


of a function $ f $ at a point $ x _ {0} $

The value

$$ D ^ {2} f( x _ {0} ) = \lim\limits _ {h \rightarrow 0 } \frac{f( x _ {0} + h)- 2f( x _ {0} )+ f( x _ {0} - h) }{h ^ {2} } . $$

It is sometimes called the Riemann derivative or the second symmetric derivative. For the first time introduced by B. Riemann in 1854 (see [2]); it was studied by H.A. Schwarz [1]. More generally, the symmetric derivative of order $ n $ is also called a Schwarz symmetric derivative:

$$ D ^ {n} f( x) = \lim\limits _ {h \rightarrow 0 } \frac{\Delta _ {h} ^ {n} f( x) }{h ^ {n} } = $$

$$ = \ \lim\limits _ {h \rightarrow 0 } \frac{\sum_{k=0}^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) (- 1) ^ {k} f ( x + ( n- 2k ) h / 2 ) }{h ^ {n} } . $$

References

[1] H.A. Schwarz, "Beweis eines für die Theorie der trigonometrischen Reihen in Betracht kommenden Hülfssatzes" , Gesammelte Math. Abhandlungen , Chelsea, reprint (1972) pp. 341–343
[2] B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" H. Weber (ed.) , B. Riemann's Gesammelte Mathematische Werke , Dover, reprint (1953) pp. 227–271 ((Original: Göttinger Akad. Abh. (1868)))
[3] I.P. Natanson, "Theory of functions of a real variable" , 1–2 , F. Ungar (1955–1961) (Translated from Russian)
[4] N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)
[5] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)

Comments

The name general derivative is also used for this notion. A natural approach is to start with the central difference $ f( x _ {0} + h/2 ) - f( x _ {0} - h/2) $, and to define the first symmetric derivative as

$$ Df( x _ {0} ) = \lim\limits _ {h \rightarrow 0 } \ \frac{f( x _ {0} + h/2)- f( x _ {0} - h/2) }{h} = \ \lim\limits _ {h \rightarrow 0 } \ \frac{\Delta _ {h} f ( x _ {0} ) }{h} , $$

and then $ D ^ {n} = D( D ^ {n-1} ) $, $ n \geq 1 $, $ D ^ {0} f = f $.

References

[a1] W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24
How to Cite This Entry:
Schwarz symmetric derivative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schwarz_symmetric_derivative&oldid=15458
This article was adapted from an original article by T.P. Lukashenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article