Namespaces
Variants
Actions

Difference between revisions of "Lobachevskii method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
l0600401.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/L060/L.0600040 Lobachevski\Aui method,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Graeffe method, Dandelin method''
 
''Graeffe method, Dandelin method''
  
A method for simultaneously calculating all roots of a polynomial. Suppose that the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600401.png" /> of the polynomial
+
A method for simultaneously calculating all roots of a polynomial. Suppose that the roots $  r _ {1} \dots r _ {n} $
 +
of the polynomial
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600402.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
f ( z)  = a _ {0} z  ^ {n} + \dots + a _ {n-1} z + a _ {n\ } =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600403.png" /></td> </tr></table>
+
$$
 +
= \
 +
a _ {0} ( z - r _ {1} ) \dots ( z - r _ {n} ) ,\  a _ {0} \neq 0,
 +
$$
  
 
satisfy the inequalities
 
satisfy the inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600404.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
| r _ {1} |  \gg \dots \gg  | r _ {n} | .
 +
$$
  
As approximations to the roots one can take the ratios <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600406.png" />.
+
As approximations to the roots one can take the ratios $  a _ {i} / a _ {i-1} $,  
 +
$  i = 1 \dots n $.
  
Now suppose that the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600407.png" />, although not satisfying (2), are all distinct in absolute value. The Lobachevskii method consists in applying to the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600408.png" /> the process of squaring, which after sufficiently many repetitions leads to an equation with roots satisfying (2). Squaring consists in going over from a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600409.png" /> to a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004010.png" /> of the same degree but with as roots the squares of the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004011.png" />. The transition is carried out by recurrence formulas.
+
Now suppose that the roots of $  f ( z) $,  
 +
although not satisfying (2), are all distinct in absolute value. The Lobachevskii method consists in applying to the equation $  f ( z) = 0 $
 +
the process of squaring, which after sufficiently many repetitions leads to an equation with roots satisfying (2). Squaring consists in going over from a polynomial $  f _ {k} ( z) $
 +
to a polynomial $  f _ {k+1} ( z) $
 +
of the same degree but with as roots the squares of the roots of $  f _ {k} ( z) $.  
 +
The transition is carried out by recurrence formulas.
  
 
The Lobachevskii method can be applied if there are groups of roots equal in absolute value, though this leads to complications in the logic and formulas of the method. The advantage of the method is that it does not require initial approximations to the roots of the polynomial. In the case of roots distinct in absolute value the rate of convergence of the process is asymptotically quadratic.
 
The Lobachevskii method can be applied if there are groups of roots equal in absolute value, though this leads to complications in the logic and formulas of the method. The advantage of the method is that it does not require initial approximations to the roots of the polynomial. In the case of roots distinct in absolute value the rate of convergence of the process is asymptotically quadratic.
  
However, the Lobachevskii method is numerically unstable, since the process of squaring leads to very rapid accumulation of the computational error. In this connection, attempts have been made to give the Lobachevskii method a self-correcting form. For example, for the calculation of the roots of (1) a sequence of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004012.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004013.png" /> is constructed, connected by the relations
+
However, the Lobachevskii method is numerically unstable, since the process of squaring leads to very rapid accumulation of the computational error. In this connection, attempts have been made to give the Lobachevskii method a self-correcting form. For example, for the calculation of the roots of (1) a sequence of polynomials $  g _ {k} ( z) $
 +
of degree $  \leq  n- 1 $
 +
is constructed, connected by the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004014.png" /></td> </tr></table>
+
$$
 +
g _ {k+1} ( z)  = zg _ {k} ( z) - \phi _ {k} f ( z) ,\  k = 0 , 1 ,\dots
 +
; \  g _ {0} ( z)  = 1 ;
 +
$$
  
 
hence
 
hence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004015.png" /></td> </tr></table>
+
$$
 +
g _ {k} ( z)  = z  ^ {k}  (  \mathop{\rm mod}  f ( z) ) .
 +
$$
  
For every fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004016.png" /> one looks for polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004017.png" /> defined as follows:
+
For every fixed $  k $
 +
one looks for polynomials $  g _ {k,p} ( z) $
 +
defined as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004018.png" /></td> </tr></table>
+
$$
 +
g _ {k,1} ( z)  = g _ {k} ( z) ;
 +
$$
  
for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004020.png" /> is a polynomial of the form
+
for $  p \geq  2 $,  
 +
$  g _ {k,p} ( z) $
 +
is a polynomial of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004021.png" /></td> </tr></table>
+
$$
 +
\psi _ {p-2} ( z) f ( z) + \phi _ {p-1} ( z) g _ {k} ( z) ,
 +
$$
  
having degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004022.png" />. If the roots of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004023.png" /> satisfy the inequalities
+
having degree $  \leq  n- p $.  
 +
If the roots of $  f ( z) $
 +
satisfy the inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004024.png" /></td> </tr></table>
+
$$
 +
| r _ {1} |  \geq  \dots \geq  | r _ {p} |  > | r _ {p+1} |  \geq  \dots \geq  | r _ {n} | ,
 +
$$
  
 
then
 
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004025.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {k \rightarrow \infty }  g _ {k,p}  =
 +
\frac{f ^ { * } ( z) }{( z - r _ {1} ) \dots ( z - r _ {p} ) }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004026.png" /> is the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004027.png" /> normalized by dividing by the coefficient at the leading term. Thus, from the original polynomial one picks out the factors corresponding to groups of roots equal in absolute value (see [[#References|[3]]]). The method was proposed by N.I. Lobachevskii in 1834 (see [[#References|[1]]]).
+
where $  f ^ { * } ( z) $
 +
is the polynomial $  f ( z) $
 +
normalized by dividing by the coefficient at the leading term. Thus, from the original polynomial one picks out the factors corresponding to groups of roots equal in absolute value (see [[#References|[3]]]). The method was proposed by N.I. Lobachevskii in 1834 (see [[#References|[1]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.I. Lobachevskii,  "Collected works" , '''4''' , Moscow-Leningrad  (1948)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.S. Berezin,  N.P. Zhidkov,  "Computing methods" , Pergamon  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Sebastião e Silva,  "Sur une méthode de approximation semblable à celle de Gräffe"  ''Portug. Math.'' , '''2'''  (1941)  pp. 271–279</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.S. Householder,  G.W. Stewart,  "The numerical factorization of a polynomial"  ''SIAM Rev.'' , '''13'''  (1971)  pp. 38–46</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.I. Lobachevskii,  "Collected works" , '''4''' , Moscow-Leningrad  (1948)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.S. Berezin,  N.P. Zhidkov,  "Computing methods" , Pergamon  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Sebastião e Silva,  "Sur une méthode de approximation semblable à celle de Gräffe"  ''Portug. Math.'' , '''2'''  (1941)  pp. 271–279</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.S. Householder,  G.W. Stewart,  "The numerical factorization of a polynomial"  ''SIAM Rev.'' , '''13'''  (1971)  pp. 38–46</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
The basic idea of squaring the roots rests on the simple observation that
 
The basic idea of squaring the roots rests on the simple observation that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004028.png" /></td> </tr></table>
+
$$
 +
( - 1)  ^ {n} f (- z) f( z)  = \
 +
a _ {0}  ^ {2} \prod_{i=1}^ { n }  ( z  ^ {2} - r _ {i}  ^ {2} )
 +
$$
  
is a polynomial in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004029.png" /> with roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004030.png" />. For a systematic treatment in the case of complex roots cf. also [[#References|[a1]]]. The method is most often referred to as Graeffe's root squaring method.
+
is a polynomial in $  z  ^ {2} $
 +
with roots $  r _ {1}  ^ {2} \dots r _ {n}  ^ {2} $.  
 +
For a systematic treatment in the case of complex roots cf. also [[#References|[a1]]]. The method is most often referred to as Graeffe's root squaring method.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Brodetsky,  G. Smeal,  "On Graeffe's method for complex roots"  ''Proc. Cambridge Philos. Soc.'' , '''22'''  (1924)  pp. 83–87</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F.B. Hildebrand,  "Introduction to numerical analysis" , McGraw-Hill  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Brodetsky,  G. Smeal,  "On Graeffe's method for complex roots"  ''Proc. Cambridge Philos. Soc.'' , '''22'''  (1924)  pp. 83–87</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  F.B. Hildebrand,  "Introduction to numerical analysis" , McGraw-Hill  (1974)</TD></TR></table>

Latest revision as of 07:55, 14 January 2024


Graeffe method, Dandelin method

A method for simultaneously calculating all roots of a polynomial. Suppose that the roots $ r _ {1} \dots r _ {n} $ of the polynomial

$$ \tag{1 } f ( z) = a _ {0} z ^ {n} + \dots + a _ {n-1} z + a _ {n\ } = $$

$$ = \ a _ {0} ( z - r _ {1} ) \dots ( z - r _ {n} ) ,\ a _ {0} \neq 0, $$

satisfy the inequalities

$$ \tag{2 } | r _ {1} | \gg \dots \gg | r _ {n} | . $$

As approximations to the roots one can take the ratios $ a _ {i} / a _ {i-1} $, $ i = 1 \dots n $.

Now suppose that the roots of $ f ( z) $, although not satisfying (2), are all distinct in absolute value. The Lobachevskii method consists in applying to the equation $ f ( z) = 0 $ the process of squaring, which after sufficiently many repetitions leads to an equation with roots satisfying (2). Squaring consists in going over from a polynomial $ f _ {k} ( z) $ to a polynomial $ f _ {k+1} ( z) $ of the same degree but with as roots the squares of the roots of $ f _ {k} ( z) $. The transition is carried out by recurrence formulas.

The Lobachevskii method can be applied if there are groups of roots equal in absolute value, though this leads to complications in the logic and formulas of the method. The advantage of the method is that it does not require initial approximations to the roots of the polynomial. In the case of roots distinct in absolute value the rate of convergence of the process is asymptotically quadratic.

However, the Lobachevskii method is numerically unstable, since the process of squaring leads to very rapid accumulation of the computational error. In this connection, attempts have been made to give the Lobachevskii method a self-correcting form. For example, for the calculation of the roots of (1) a sequence of polynomials $ g _ {k} ( z) $ of degree $ \leq n- 1 $ is constructed, connected by the relations

$$ g _ {k+1} ( z) = zg _ {k} ( z) - \phi _ {k} f ( z) ,\ k = 0 , 1 ,\dots ; \ g _ {0} ( z) = 1 ; $$

hence

$$ g _ {k} ( z) = z ^ {k} ( \mathop{\rm mod} f ( z) ) . $$

For every fixed $ k $ one looks for polynomials $ g _ {k,p} ( z) $ defined as follows:

$$ g _ {k,1} ( z) = g _ {k} ( z) ; $$

for $ p \geq 2 $, $ g _ {k,p} ( z) $ is a polynomial of the form

$$ \psi _ {p-2} ( z) f ( z) + \phi _ {p-1} ( z) g _ {k} ( z) , $$

having degree $ \leq n- p $. If the roots of $ f ( z) $ satisfy the inequalities

$$ | r _ {1} | \geq \dots \geq | r _ {p} | > | r _ {p+1} | \geq \dots \geq | r _ {n} | , $$

then

$$ \lim\limits _ {k \rightarrow \infty } g _ {k,p} = \frac{f ^ { * } ( z) }{( z - r _ {1} ) \dots ( z - r _ {p} ) } , $$

where $ f ^ { * } ( z) $ is the polynomial $ f ( z) $ normalized by dividing by the coefficient at the leading term. Thus, from the original polynomial one picks out the factors corresponding to groups of roots equal in absolute value (see [3]). The method was proposed by N.I. Lobachevskii in 1834 (see [1]).

References

[1] N.I. Lobachevskii, "Collected works" , 4 , Moscow-Leningrad (1948) (In Russian)
[2] I.S. Berezin, N.P. Zhidkov, "Computing methods" , Pergamon (1973) (Translated from Russian)
[3] J. Sebastião e Silva, "Sur une méthode de approximation semblable à celle de Gräffe" Portug. Math. , 2 (1941) pp. 271–279
[4] A.S. Householder, G.W. Stewart, "The numerical factorization of a polynomial" SIAM Rev. , 13 (1971) pp. 38–46

Comments

The basic idea of squaring the roots rests on the simple observation that

$$ ( - 1) ^ {n} f (- z) f( z) = \ a _ {0} ^ {2} \prod_{i=1}^ { n } ( z ^ {2} - r _ {i} ^ {2} ) $$

is a polynomial in $ z ^ {2} $ with roots $ r _ {1} ^ {2} \dots r _ {n} ^ {2} $. For a systematic treatment in the case of complex roots cf. also [a1]. The method is most often referred to as Graeffe's root squaring method.

References

[a1] S. Brodetsky, G. Smeal, "On Graeffe's method for complex roots" Proc. Cambridge Philos. Soc. , 22 (1924) pp. 83–87
[a2] F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974)
How to Cite This Entry:
Lobachevskii method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lobachevskii_method&oldid=12748
This article was adapted from an original article by Kh.D. Ikramov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article