Difference between revisions of "Density matrix"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0310901.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/D031/D.0301090 Density matrix | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a state $ \rho $ | |
+ | defined on the algebra $ \mathfrak A ( {\mathcal H}) $ | ||
+ | of bounded linear operators acting on a Hilbert space $ {\mathcal H} $'' | ||
− | + | The positive [[Nuclear operator|nuclear operator]] $ \widetilde \rho \in \mathfrak A ( {\mathcal H}) $ | |
+ | such that | ||
− | + | $$ \tag{1 } | |
+ | \rho ( A) = \mathop{\rm tr} A \widetilde \rho ,\ \ | ||
+ | A \in \mathfrak A ( {\mathcal H}), | ||
+ | $$ | ||
− | + | where $ \mathop{\rm tr} \widetilde \rho = 1 $. | |
+ | Conversely, any state $ \rho $, | ||
+ | i.e. any linear positive $ ( \rho ( A ^ {*} A) \geq 0) $ | ||
+ | normalized $ ( \rho ( E) = 1) $ | ||
+ | functional on $ \mathfrak A( {\mathcal H}) $, | ||
+ | can be represented in the form (1), i.e. it has a density matrix $ \widetilde \rho $, | ||
+ | which is moreover unique. | ||
− | + | The concept of a density matrix arose in statistical physics in defining a Gibbs quantum state. Let a quantum system occupying a finite volume $ V $ | |
+ | in $ \mathbf R ^ {3} $ | ||
+ | be described by the vectors of a certain Hilbert space $ {\mathcal H} _ {V} $, | ||
+ | by the Hamiltonian $ H _ {V} ^ {0} $ | ||
+ | and, possibly, by some set of mutually commuting "first integrals" $ H _ {V} ^ {1} \dots H _ {V} ^ {k} $, | ||
+ | $ k = 1, 2 ,\dots $. | ||
+ | A Gibbs state for such a system is a state on $ \mathfrak A( {\mathcal H} _ {V} ) $ | ||
+ | defined by the density matrix | ||
− | + | $$ \tag{2 } | |
+ | \widetilde \rho = Z ^ {-1} \mathop{\rm exp} \{ - \beta ( H _ {V} ^ {0} + \mu _ {1} H _ {V} ^ {1} | ||
+ | + \dots + \mu _ {k} H _ {V} ^ {k} ) \} , | ||
+ | $$ | ||
− | + | where $ Z $ | |
+ | is a normalizing factor and $ \beta > 0 $, | ||
+ | $ \mu _ {1} \dots \mu _ {k} $ | ||
+ | are real parameters. | ||
− | + | In addition to the density matrix (2), the state of a system in quantum statistical physics may be defined by means of the so-called reduced density matrix. In the simplest case of a system of identical particles (bosons or fermions) described by the vectors of a Fock [Fok] space $ {\mathcal H} _ {V} $, | |
+ | the reduced density matrix $ \widehat \rho $ | ||
+ | of a state $ \rho $ | ||
+ | is the set of (in general, generalized) functions | ||
+ | |||
+ | $$ \tag{3 } | ||
+ | \widehat \rho = \{ \widehat \rho _ {m,n} ( x _ {1} \dots x _ {m} , y _ {1} \dots y _ {n} ) :\ | ||
+ | x _ {i} \in V , y _ {j} \in V , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | {} i = 1 \dots m,\ j = 1 \dots n; \ m , n = 0, 1 ,\dots \} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \widehat \rho _ {m,n} ( x _ {1} \dots x _ {m} , y _ {1} \dots y _ {n} ) = \ | ||
+ | \rho \left ( \prod_{i=1}^ { m } a( x _ {i} ) \prod_{j=1}^ { n } a ^ {*} ( y _ {j} ) \right ) , | ||
+ | $$ | ||
− | and where | + | and where $ a( x), a ^ {*} ( y) $, |
+ | $ x , y \in \mathbf R ^ {3} $, | ||
+ | are the creation operators and annihilation operators, respectively, acting in $ {\mathcal H} _ {V} $. | ||
+ | If the creation and annihilation operators in $ \mathfrak A( {\mathcal H} _ {V} ) $ | ||
+ | are replaced by some other system of generators $ \{ {a _ \lambda } : {\lambda \in {\mathcal L} } \} $( | ||
+ | $ {\mathcal L} $ | ||
+ | is a certain set of indices), then the reduced density matrix $ \widehat \rho $ | ||
+ | for a state $ \rho $ | ||
+ | is defined by analogy with (3) as the set of values of $ \rho $ | ||
+ | on all possible monomials of the form | ||
− | + | $$ | |
+ | a _ {\lambda _ {1} } \dots a _ {\lambda _ {n} } ,\ \ | ||
+ | \lambda _ {i} \in {\mathcal L} ,\ | ||
+ | i = 1 \dots n, n = 1, 2 ,\dots . | ||
+ | $$ | ||
− | The reduced density matrix is particularly convenient for determining the limiting Gibbs state in a | + | The reduced density matrix is particularly convenient for determining the limiting Gibbs state in a $ C ^ {*} $- |
+ | algebra $ \mathfrak A _ \infty $ | ||
+ | of so-called quasi-local observables: $ \mathfrak A _ \infty = {\cup _ {V \in \mathbf R ^ {2} } \mathfrak A( {\mathcal H} _ {V} ) } bar $( | ||
+ | the bar denotes closure in the uniform topology). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.D. Landau, E.M. Lifshitz, "Statistical physics" , Pergamon (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Ruelle, "Statistical mechanics: rigorous results" , Benjamin (1974)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.D. Landau, E.M. Lifshitz, "Statistical physics" , Pergamon (1980) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Ruelle, "Statistical mechanics: rigorous results" , Benjamin (1974)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The statement that any state | + | The statement that any state $ \rho $ |
+ | has a representation (1) has been proved for finite-dimensional $ {\mathcal H} $ | ||
+ | only. | ||
The functions defined by (3) are the quantum analogues of distribution functions. | The functions defined by (3) are the quantum analogues of distribution functions. |
Latest revision as of 07:51, 14 January 2024
of a state $ \rho $
defined on the algebra $ \mathfrak A ( {\mathcal H}) $
of bounded linear operators acting on a Hilbert space $ {\mathcal H} $
The positive nuclear operator $ \widetilde \rho \in \mathfrak A ( {\mathcal H}) $ such that
$$ \tag{1 } \rho ( A) = \mathop{\rm tr} A \widetilde \rho ,\ \ A \in \mathfrak A ( {\mathcal H}), $$
where $ \mathop{\rm tr} \widetilde \rho = 1 $. Conversely, any state $ \rho $, i.e. any linear positive $ ( \rho ( A ^ {*} A) \geq 0) $ normalized $ ( \rho ( E) = 1) $ functional on $ \mathfrak A( {\mathcal H}) $, can be represented in the form (1), i.e. it has a density matrix $ \widetilde \rho $, which is moreover unique.
The concept of a density matrix arose in statistical physics in defining a Gibbs quantum state. Let a quantum system occupying a finite volume $ V $ in $ \mathbf R ^ {3} $ be described by the vectors of a certain Hilbert space $ {\mathcal H} _ {V} $, by the Hamiltonian $ H _ {V} ^ {0} $ and, possibly, by some set of mutually commuting "first integrals" $ H _ {V} ^ {1} \dots H _ {V} ^ {k} $, $ k = 1, 2 ,\dots $. A Gibbs state for such a system is a state on $ \mathfrak A( {\mathcal H} _ {V} ) $ defined by the density matrix
$$ \tag{2 } \widetilde \rho = Z ^ {-1} \mathop{\rm exp} \{ - \beta ( H _ {V} ^ {0} + \mu _ {1} H _ {V} ^ {1} + \dots + \mu _ {k} H _ {V} ^ {k} ) \} , $$
where $ Z $ is a normalizing factor and $ \beta > 0 $, $ \mu _ {1} \dots \mu _ {k} $ are real parameters.
In addition to the density matrix (2), the state of a system in quantum statistical physics may be defined by means of the so-called reduced density matrix. In the simplest case of a system of identical particles (bosons or fermions) described by the vectors of a Fock [Fok] space $ {\mathcal H} _ {V} $, the reduced density matrix $ \widehat \rho $ of a state $ \rho $ is the set of (in general, generalized) functions
$$ \tag{3 } \widehat \rho = \{ \widehat \rho _ {m,n} ( x _ {1} \dots x _ {m} , y _ {1} \dots y _ {n} ) :\ x _ {i} \in V , y _ {j} \in V , $$
$$ {} i = 1 \dots m,\ j = 1 \dots n; \ m , n = 0, 1 ,\dots \} , $$
where
$$ \widehat \rho _ {m,n} ( x _ {1} \dots x _ {m} , y _ {1} \dots y _ {n} ) = \ \rho \left ( \prod_{i=1}^ { m } a( x _ {i} ) \prod_{j=1}^ { n } a ^ {*} ( y _ {j} ) \right ) , $$
and where $ a( x), a ^ {*} ( y) $, $ x , y \in \mathbf R ^ {3} $, are the creation operators and annihilation operators, respectively, acting in $ {\mathcal H} _ {V} $. If the creation and annihilation operators in $ \mathfrak A( {\mathcal H} _ {V} ) $ are replaced by some other system of generators $ \{ {a _ \lambda } : {\lambda \in {\mathcal L} } \} $( $ {\mathcal L} $ is a certain set of indices), then the reduced density matrix $ \widehat \rho $ for a state $ \rho $ is defined by analogy with (3) as the set of values of $ \rho $ on all possible monomials of the form
$$ a _ {\lambda _ {1} } \dots a _ {\lambda _ {n} } ,\ \ \lambda _ {i} \in {\mathcal L} ,\ i = 1 \dots n, n = 1, 2 ,\dots . $$
The reduced density matrix is particularly convenient for determining the limiting Gibbs state in a $ C ^ {*} $- algebra $ \mathfrak A _ \infty $ of so-called quasi-local observables: $ \mathfrak A _ \infty = {\cup _ {V \in \mathbf R ^ {2} } \mathfrak A( {\mathcal H} _ {V} ) } bar $( the bar denotes closure in the uniform topology).
References
[1] | L.D. Landau, E.M. Lifshitz, "Statistical physics" , Pergamon (1980) (Translated from Russian) |
[2] | D. Ruelle, "Statistical mechanics: rigorous results" , Benjamin (1974) |
Comments
The statement that any state $ \rho $ has a representation (1) has been proved for finite-dimensional $ {\mathcal H} $ only.
The functions defined by (3) are the quantum analogues of distribution functions.
Density matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Density_matrix&oldid=17957