Namespaces
Variants
Actions

Difference between revisions of "Cohomology ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A ring the additive group of which is the graded cohomology group
+
<!--
 +
c0231601.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/C023/C.0203160 Cohomology ring
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231601.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231602.png" /> is a chain complex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231603.png" /> is a coefficient group and the multiplication is defined by the linear set of mappings
+
A ring the additive group of which is the graded cohomology group
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231604.png" /></td> </tr></table>
 
 
 
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231605.png" />, which are the inner cohomology multiplications (cup products). The cohomology ring turns out to be equipped with the structure of a graded ring.
 
  
For the existence of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231606.png" /> it is enough to have a set of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231607.png" /> satisfying certain additional properties, and a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231608.png" />, that is, a multiplication in the coefficient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c0231609.png" /> (see [[#References|[2]]]). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316010.png" /> induce mappings
+
$$
 +
\oplus_{n=0}^  \infty 
 +
H  ^ {n} ( X , A ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316011.png" /></td> </tr></table>
+
where  $  X $
 +
is a chain complex,  $  A $
 +
is a coefficient group and the multiplication is defined by the linear set of mappings
  
which in their turn induce mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316012.png" /> in cohomology.
+
$$
 +
\nu _ {m,n} : H  ^ {m} ( X , A ) \otimes H  ^ {n} ( X , A )  \rightarrow  H  ^ {m+n}
 +
( X , A ) ,
 +
$$
  
In particular, a ring structure is defined on the graded group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316014.png" /> is a group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316015.png" /> is the ring of integers with a trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316016.png" />-action. The corresponding mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316017.png" /> coincide with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316018.png" />-product. This is an associative ring with identity, and for homogeneous elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316019.png" /> of degrees <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316020.png" /> respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316021.png" />.
+
for all  $  m , n \geq  0 $,  
 +
which are the inner cohomology multiplications (cup products). The cohomology ring turns out to be equipped with the structure of a graded ring.
  
Analogously, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316022.png" />-product defines a ring structure on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316023.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316024.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316025.png" />-dimensional singular cohomology group of a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316026.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023160/c02316027.png" />.
+
For the existence of the mappings  $  \nu _ {m,n} $
 
+
it is enough to have a set of mappings  $  \widehat \nu  _ {m,n} : X _ {m+n} \rightarrow X _ {m} \otimes X _ {n} $
====References====
+
satisfying certain additional properties, and a mapping  $ A \otimes A \rightarrow A $,  
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cartan,   S. Eilenberg,   "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane,   "Homology" , Springer  (1963)</TD></TR></table>
+
that is, a multiplication in the coefficient group  $ A $(
 +
see [[#References|[2]]]). The $  \nu _ {m,n} $
 +
induce mappings
  
 +
$$
 +
\mathop{\rm Hom} ( X _ {m} , A ) \otimes  \mathop{\rm Hom} ( X _ {n} , A )
 +
\rightarrow  \mathop{\rm Hom} ( X _ {m+n} , A ) ,
 +
$$
  
 +
which in their turn induce mappings  $  \nu _ {m,n} $
 +
in cohomology.
  
====Comments====
+
In particular, a ring structure is defined on the graded group  $  H ( G , \mathbf Z ) = \oplus_{n=0}^  \infty  H  ^ {n} ( G , \mathbf Z ) $,
 +
where  $  G $
 +
is a group and  $  \mathbf Z $
 +
is the ring of integers with a trivial  $  G $-
 +
action. The corresponding mappings  $  \nu _ {m,n} $
 +
coincide with the  $  \cup $-
 +
product. This is an associative ring with identity, and for homogeneous elements  $  a , b \in H ( G , \mathbf Z ) $
 +
of degrees  $  p , q $
 +
respectively,  $  a b = ( - 1 )  ^ {pq} b a $.
  
 +
Analogously, the  $  \cup $-
 +
product defines a ring structure on the group  $  \oplus_{n=0}^  \infty  H  ^ {n} ( X , \mathbf Z ) $,
 +
where  $  H  ^ {n} ( X , \mathbf Z ) $
 +
is the  $  n $-
 +
dimensional singular cohomology group of a topological space  $  X $
 +
with coefficients in  $  \mathbf Z $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1972)  pp. Chapt. VII</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Cartan,  S. Eilenberg,  "Homological algebra" , Princeton Univ. Press  (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1972)  pp. Chapt. VII</TD></TR></table>

Latest revision as of 18:45, 13 January 2024


A ring the additive group of which is the graded cohomology group

$$ \oplus_{n=0}^ \infty H ^ {n} ( X , A ) , $$

where $ X $ is a chain complex, $ A $ is a coefficient group and the multiplication is defined by the linear set of mappings

$$ \nu _ {m,n} : H ^ {m} ( X , A ) \otimes H ^ {n} ( X , A ) \rightarrow H ^ {m+n} ( X , A ) , $$

for all $ m , n \geq 0 $, which are the inner cohomology multiplications (cup products). The cohomology ring turns out to be equipped with the structure of a graded ring.

For the existence of the mappings $ \nu _ {m,n} $ it is enough to have a set of mappings $ \widehat \nu _ {m,n} : X _ {m+n} \rightarrow X _ {m} \otimes X _ {n} $ satisfying certain additional properties, and a mapping $ A \otimes A \rightarrow A $, that is, a multiplication in the coefficient group $ A $( see [2]). The $ \nu _ {m,n} $ induce mappings

$$ \mathop{\rm Hom} ( X _ {m} , A ) \otimes \mathop{\rm Hom} ( X _ {n} , A ) \rightarrow \mathop{\rm Hom} ( X _ {m+n} , A ) , $$

which in their turn induce mappings $ \nu _ {m,n} $ in cohomology.

In particular, a ring structure is defined on the graded group $ H ( G , \mathbf Z ) = \oplus_{n=0}^ \infty H ^ {n} ( G , \mathbf Z ) $, where $ G $ is a group and $ \mathbf Z $ is the ring of integers with a trivial $ G $- action. The corresponding mappings $ \nu _ {m,n} $ coincide with the $ \cup $- product. This is an associative ring with identity, and for homogeneous elements $ a , b \in H ( G , \mathbf Z ) $ of degrees $ p , q $ respectively, $ a b = ( - 1 ) ^ {pq} b a $.

Analogously, the $ \cup $- product defines a ring structure on the group $ \oplus_{n=0}^ \infty H ^ {n} ( X , \mathbf Z ) $, where $ H ^ {n} ( X , \mathbf Z ) $ is the $ n $- dimensional singular cohomology group of a topological space $ X $ with coefficients in $ \mathbf Z $.

References

[1] H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)
[2] S. MacLane, "Homology" , Springer (1963)
[a1] A. Dold, "Lectures on algebraic topology" , Springer (1972) pp. Chapt. VII
How to Cite This Entry:
Cohomology ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cohomology_ring&oldid=19247
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article