Difference between revisions of "Lindeberg-Feller theorem"
Ulf Rehmann (talk | contribs) m (moved Lindeberg–Feller theorem to Lindeberg-Feller theorem: ascii title) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0589401.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/L058/L.0508940 Lindeberg\ANDFeller theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A theorem that establishes necessary and sufficient conditions for the asymptotic normality of the distribution function of sums of independent random variables that have finite variances. Let $ X _ {1} , X _ {2} \dots $ | ||
+ | be a sequence of independent random variables with means $ a _ {1} , a _ {2} \dots $ | ||
+ | and finite variances $ \sigma _ {1} ^ {2} , \sigma _ {2} ^ {2} \dots $ | ||
+ | not all of which are zero. Let | ||
+ | |||
+ | $$ | ||
+ | B _ {n} ^ {2} = \sum_{j=1}^ { n } \sigma _ {j} ^ {2} ,\ \ | ||
+ | V _ {j} ( x) = {\mathsf P} \{ x _ {j} < x \} . | ||
+ | $$ | ||
In order that | In order that | ||
− | + | $$ | |
+ | B _ {n} ^ {-2} \max _ {1 \leq j \leq n } \ | ||
+ | \sigma _ {j} ^ {2} \rightarrow 0 | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | {\mathsf P} \left \{ B _ {n} ^ {-1} \sum_{j=1}^ { n } | ||
+ | ( X _ {i} - a _ {j} ) < x \right \} \rightarrow \ | ||
+ | |||
+ | \frac{1}{\sqrt {2 \pi }} | ||
+ | \int\limits _ {- \infty } ^ { x } | ||
+ | e ^ {- t ^ {2} /2 } d t | ||
+ | $$ | ||
− | for any | + | for any $ x $ |
+ | as $ n \rightarrow \infty $, | ||
+ | it is necessary and sufficient that the following condition (the Lindeberg condition) is satisfied: | ||
− | + | $$ | |
+ | B _ {n} ^ {-2} \sum_{j=1}^ { n } | ||
+ | \int\limits _ {| x - a _ {j} | \geq \epsilon B _ {n} } | ||
+ | ( x - a _ {j} ) ^ {2} d V _ {j} ( x) \rightarrow 0 | ||
+ | $$ | ||
− | as | + | as $ n \rightarrow \infty $ |
+ | for any $ \epsilon > 0 $. | ||
+ | Sufficiency was proved by J.W. Lindeberg [[#References|[1]]] and necessity by W. Feller [[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W. Lindeberg, "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung" ''Math. Z.'' , '''15''' (1922) pp. 211–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Feller, "Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung" ''Math. Z.'' , '''40''' (1935) pp. 521–559</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Loève, "Probability theory" , Springer (1977)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.W. Lindeberg, "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung" ''Math. Z.'' , '''15''' (1922) pp. 211–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Feller, "Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung" ''Math. Z.'' , '''40''' (1935) pp. 521–559</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Loève, "Probability theory" , Springer (1977)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian)</TD></TR></table> |
Latest revision as of 17:05, 13 January 2024
A theorem that establishes necessary and sufficient conditions for the asymptotic normality of the distribution function of sums of independent random variables that have finite variances. Let $ X _ {1} , X _ {2} \dots $
be a sequence of independent random variables with means $ a _ {1} , a _ {2} \dots $
and finite variances $ \sigma _ {1} ^ {2} , \sigma _ {2} ^ {2} \dots $
not all of which are zero. Let
$$ B _ {n} ^ {2} = \sum_{j=1}^ { n } \sigma _ {j} ^ {2} ,\ \ V _ {j} ( x) = {\mathsf P} \{ x _ {j} < x \} . $$
In order that
$$ B _ {n} ^ {-2} \max _ {1 \leq j \leq n } \ \sigma _ {j} ^ {2} \rightarrow 0 $$
and
$$ {\mathsf P} \left \{ B _ {n} ^ {-1} \sum_{j=1}^ { n } ( X _ {i} - a _ {j} ) < x \right \} \rightarrow \ \frac{1}{\sqrt {2 \pi }} \int\limits _ {- \infty } ^ { x } e ^ {- t ^ {2} /2 } d t $$
for any $ x $ as $ n \rightarrow \infty $, it is necessary and sufficient that the following condition (the Lindeberg condition) is satisfied:
$$ B _ {n} ^ {-2} \sum_{j=1}^ { n } \int\limits _ {| x - a _ {j} | \geq \epsilon B _ {n} } ( x - a _ {j} ) ^ {2} d V _ {j} ( x) \rightarrow 0 $$
as $ n \rightarrow \infty $ for any $ \epsilon > 0 $. Sufficiency was proved by J.W. Lindeberg [1] and necessity by W. Feller [2].
References
[1] | J.W. Lindeberg, "Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung" Math. Z. , 15 (1922) pp. 211–225 |
[2] | W. Feller, "Ueber den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung" Math. Z. , 40 (1935) pp. 521–559 |
[3] | M. Loève, "Probability theory" , Springer (1977) |
[4] | V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) |
Lindeberg-Feller theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lindeberg-Feller_theorem&oldid=22747