Namespaces
Variants
Actions

Difference between revisions of "Probability integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(OldImage template added)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
<!--
 +
p0749201.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/P074/P.0704920 Probability integral,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''error integral''
 
''error integral''
  
 
The function
 
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749201.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm erf} ( x)  = \
 +
 
 +
\frac{2}{\sqrt \pi }
 +
 
 +
\int\limits _ { 0 } ^ { x }  e ^ {- t  ^ {2} }  d t ,\ \
 +
| x | < \infty .
 +
$$
  
 
In probability theory one mostly encounters not the probability integral, but the [[Normal distribution|normal distribution]] function
 
In probability theory one mostly encounters not the probability integral, but the [[Normal distribution|normal distribution]] function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749202.png" /></td> </tr></table>
+
$$
 +
\Phi ( x)  = \
  
which is the so-called Gaussian probability integral. For a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749203.png" /> having the normal distribution with mathematical expectation 0 and variance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749204.png" />, the probability that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749205.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749206.png" />. For real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749207.png" />, the probability integral takes real values; in particular,
+
\frac{1}{\sqrt {2 \pi } }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749208.png" /></td> </tr></table>
+
\int\limits _ {- \infty } ^ { x }  e ^ {- t  ^ {2} / 2 }  d t  =
 +
\frac{1}{2}
 +
 
 +
\left [ 1 +  \mathop{\rm erf} \left (
 +
\frac{x}{\sqrt 2 }
 +
\right )  \right ] ,
 +
$$
 +
 
 +
which is the so-called Gaussian probability integral. For a random variable  $  X $
 +
having the normal distribution with mathematical expectation 0 and variance  $  \sigma  ^ {2} $,
 +
the probability that  $  | X | \leq  t $
 +
is equal to  $  \mathop{\rm erf} ( t / \sqrt 2 ) $.
 +
For real  $  x $,
 +
the probability integral takes real values; in particular,
 +
 
 +
$$
 +
\mathop{\rm erf} ( 0)  = 0 ,\ \
 +
\lim\limits _ {x \rightarrow + \infty }  \mathop{\rm erf} ( x)  = 1 .
 +
$$
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p074920a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p074920a.gif" />
Line 17: Line 55:
 
Figure: p074920a
 
Figure: p074920a
  
The graph of the probability integral and its derivatives are illustrated in the figure. Regarded as a function of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p0749209.png" />, the probability integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492010.png" /> is an entire function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492011.png" />.
+
The graph of the probability integral and its derivatives are illustrated in the figure. Regarded as a function of the complex variable $  z $,  
 +
the probability integral $  \mathop{\rm erf} ( z) $
 +
is an entire function of $  z $.
  
The asymptotic representation for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492013.png" />, is given by:
+
The asymptotic representation for large $  z $,
 +
$  \mathop{\rm Re}  z > 0 $,  
 +
is given by:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492014.png" /></td> </tr></table>
+
$$
 +
1 - \mathop{\rm erf} ( z)  \sim \
  
In a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492015.png" /> the probability integral can be represented by the series
+
\frac{e ^ {- z  ^ {2} } }{\sqrt {\pi z } }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492016.png" /></td> </tr></table>
+
\left (
 +
1 + \sum_{k=1} ^  \infty  ( - 1 )  ^ {k}
  
The probability integral is related to the [[Fresnel integrals|Fresnel integrals]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492018.png" /> by the formulas
+
\frac{1 \cdot 3 \dots ( 2 k - 1 ) }{2  ^ {k} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492019.png" /></td> </tr></table>
+
\frac{1}{z  ^ {2k} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492020.png" /></td> </tr></table>
+
\right ) .
 +
$$
 +
 
 +
In a neighbourhood of  $  z = 0 $
 +
the probability integral can be represented by the series
 +
 
 +
$$
 +
\mathop{\rm erf} ( z)  = \
 +
 
 +
\frac{2}{\sqrt \pi }
 +
 
 +
\left (
 +
z -
 +
\frac{z  ^ {3} }{1!3}
 +
 
 +
+ \dots +
 +
\frac{( - 1 )  ^ {k} }{k ! ( 2 k + 1 ) }
 +
 
 +
z  ^ {2k+1} + \dots
 +
\right ) .
 +
$$
 +
 
 +
The probability integral is related to the [[Fresnel integrals|Fresnel integrals]]  $  C ( z) $
 +
and  $  S ( z) $
 +
by the formulas
 +
 
 +
$$
 +
1+
 +
\frac{i}{2}
 +
\
 +
\mathop{\rm erf} \left ( 1-
 +
\frac{i}{\sqrt 2}
 +
z \right )  = \
 +
C ( z) + i S ( z) ,
 +
$$
 +
 
 +
$$
 +
1-
 +
\frac{i}{2}
 +
  \mathop{\rm erf} \left ( 1+
 +
\frac{i}{\sqrt 2}
 +
z \right )  = C ( z) - i S ( z) .
 +
$$
  
 
The derivative of the probability integral is given by:
 
The derivative of the probability integral is given by:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492021.png" /></td> </tr></table>
+
$$
 +
[  \mathop{\rm erf} ( z) ]  ^  \prime  = \
 +
 
 +
\frac{2}{\sqrt \pi}
 +
 
 +
e ^ {- z  ^ {2} } .
 +
$$
  
 
The following notations are sometimes used:
 
The following notations are sometimes used:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492022.png" /></td> </tr></table>
+
$$
 +
\Theta ( x)  = H ( x)  = \
 +
\Phi ( x)  =   \mathop{\rm erf} ( x) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492023.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Erf} ( x)  =
 +
\frac{\sqrt \pi }{2}
 +
  \mathop{\rm erf} ( x) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492024.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Erfi} ( x)  = - i
 +
\frac{\sqrt \pi }{2}
 +
  \mathop{\rm erf} ( i x
 +
= \int\limits _ { 0 } ^ { x }  e ^ {t  ^ {2} }  d t ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492025.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Erfc} ( x)  =
 +
\frac{\sqrt \pi }{2}
 +
-  \mathop{\rm Erf}  x  = \int\limits
 +
_ { x } ^  \infty  e ^ {- t  ^ {2} }  d t ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492026.png" /></td> </tr></table>
+
$$
 +
\alpha ( x)  =
 +
\frac{2}{\sqrt \pi}
 +
\int\limits _ {- \infty } ^ { x }  e ^
 +
{- t  ^ {2} } d t - =
 +
\frac{2} \pi
 +
  \mathop{\rm Erf} \left (
 +
\frac{x}{\sqrt 2}
 +
\right ) .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Bateman (ed.)  A. Erdélyi (ed.)  et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Jahnke,  F. Emde,  "Tables of functions with formulae and curves" , Dover, reprint  (1945)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Krazer,  W. Franz,  "Transzendente Funktionen" , Akademie Verlag  (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Lebedev,  "Special functions and their applications" , Prentice-Hall  (1965)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Bateman (ed.)  A. Erdélyi (ed.)  et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill  (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Jahnke,  F. Emde,  "Tables of functions with formulae and curves" , Dover, reprint  (1945)  (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Krazer,  W. Franz,  "Transzendente Funktionen" , Akademie Verlag  (1960)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Lebedev,  "Special functions and their applications" , Prentice-Hall  (1965)  (Translated from Russian)</TD></TR></table>
  
 +
====Comments====
 +
The series representation of the probability integral around  $  z= 0 $
 +
takes the form of a [[confluent hypergeometric function]]:
  
 +
$$
 +
\mathop{\rm erf} ( z)=
 +
\frac{2}{\sqrt \pi }
 +
z \Phi ( 1/2;  3/2;  - z  ^ {2} ) .
 +
$$
  
====Comments====
+
{{OldImage}}
The series representation of the probability integral around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492027.png" /> takes the form of a [[Confluent hypergeometric function|confluent hypergeometric function]]:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074920/p07492028.png" /></td> </tr></table>
 

Latest revision as of 19:23, 11 January 2024


error integral

The function

$$ \mathop{\rm erf} ( x) = \ \frac{2}{\sqrt \pi } \int\limits _ { 0 } ^ { x } e ^ {- t ^ {2} } d t ,\ \ | x | < \infty . $$

In probability theory one mostly encounters not the probability integral, but the normal distribution function

$$ \Phi ( x) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { x } e ^ {- t ^ {2} / 2 } d t = \frac{1}{2} \left [ 1 + \mathop{\rm erf} \left ( \frac{x}{\sqrt 2 } \right ) \right ] , $$

which is the so-called Gaussian probability integral. For a random variable $ X $ having the normal distribution with mathematical expectation 0 and variance $ \sigma ^ {2} $, the probability that $ | X | \leq t $ is equal to $ \mathop{\rm erf} ( t / \sqrt 2 ) $. For real $ x $, the probability integral takes real values; in particular,

$$ \mathop{\rm erf} ( 0) = 0 ,\ \ \lim\limits _ {x \rightarrow + \infty } \mathop{\rm erf} ( x) = 1 . $$

Figure: p074920a

The graph of the probability integral and its derivatives are illustrated in the figure. Regarded as a function of the complex variable $ z $, the probability integral $ \mathop{\rm erf} ( z) $ is an entire function of $ z $.

The asymptotic representation for large $ z $, $ \mathop{\rm Re} z > 0 $, is given by:

$$ 1 - \mathop{\rm erf} ( z) \sim \ \frac{e ^ {- z ^ {2} } }{\sqrt {\pi z } } \left ( 1 + \sum_{k=1} ^ \infty ( - 1 ) ^ {k} \frac{1 \cdot 3 \dots ( 2 k - 1 ) }{2 ^ {k} } \frac{1}{z ^ {2k} } \right ) . $$

In a neighbourhood of $ z = 0 $ the probability integral can be represented by the series

$$ \mathop{\rm erf} ( z) = \ \frac{2}{\sqrt \pi } \left ( z - \frac{z ^ {3} }{1!3} + \dots + \frac{( - 1 ) ^ {k} }{k ! ( 2 k + 1 ) } z ^ {2k+1} + \dots \right ) . $$

The probability integral is related to the Fresnel integrals $ C ( z) $ and $ S ( z) $ by the formulas

$$ 1+ \frac{i}{2} \ \mathop{\rm erf} \left ( 1- \frac{i}{\sqrt 2} z \right ) = \ C ( z) + i S ( z) , $$

$$ 1- \frac{i}{2} \mathop{\rm erf} \left ( 1+ \frac{i}{\sqrt 2} z \right ) = C ( z) - i S ( z) . $$

The derivative of the probability integral is given by:

$$ [ \mathop{\rm erf} ( z) ] ^ \prime = \ \frac{2}{\sqrt \pi} e ^ {- z ^ {2} } . $$

The following notations are sometimes used:

$$ \Theta ( x) = H ( x) = \ \Phi ( x) = \mathop{\rm erf} ( x) , $$

$$ \mathop{\rm Erf} ( x) = \frac{\sqrt \pi }{2} \mathop{\rm erf} ( x) , $$

$$ \mathop{\rm Erfi} ( x) = - i \frac{\sqrt \pi }{2} \mathop{\rm erf} ( i x ) = \int\limits _ { 0 } ^ { x } e ^ {t ^ {2} } d t , $$

$$ \mathop{\rm Erfc} ( x) = \frac{\sqrt \pi }{2} - \mathop{\rm Erf} x = \int\limits _ { x } ^ \infty e ^ {- t ^ {2} } d t , $$

$$ \alpha ( x) = \frac{2}{\sqrt \pi} \int\limits _ {- \infty } ^ { x } e ^ {- t ^ {2} } d t - 1 = \frac{2} \pi \mathop{\rm Erf} \left ( \frac{x}{\sqrt 2} \right ) . $$

References

[1] H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953)
[2] E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)
[3] A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)
[4] N.N. Lebedev, "Special functions and their applications" , Prentice-Hall (1965) (Translated from Russian)

Comments

The series representation of the probability integral around $ z= 0 $ takes the form of a confluent hypergeometric function:

$$ \mathop{\rm erf} ( z)= \frac{2}{\sqrt \pi } z \Phi ( 1/2; 3/2; - z ^ {2} ) . $$


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Probability integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Probability_integral&oldid=18624
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article