Difference between revisions of "Stochastic integral"
(Importing text file) |
(latex details) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0901301.png | ||
+ | $#A+1 = 87 n = 1 | ||
+ | $#C+1 = 87 : ~/encyclopedia/old_files/data/S090/S.0900130 Stochastic integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | {{MSC|60H05}} | |
− | + | [[Category:Stochastic analysis]] | |
− | + | An integral "∫ H dX" with respect to a [[Semi-martingale|semi-martingale]] $ X $ | |
+ | on some stochastic basis $ ( \Omega , {\mathcal F} , ( {\mathcal F} _ {t} ) _ {t} , {\mathsf P} ) $, | ||
+ | defined for every locally bounded predictable process $ H = ( H _ {t} , {\mathcal F} _ {t} ) $. | ||
+ | One of the possible constructions of a stochastic integral is as follows. At first a stochastic integral is defined for simple predictable processes $ H $, | ||
+ | of the form | ||
− | + | $$ | |
+ | H _ {t} = h( \omega ) I _ {( a,b] } ( t),\ a < b, | ||
+ | $$ | ||
− | + | where $ h $ | |
+ | is $ {\mathcal F} _ {a} $- | ||
+ | measurable. In this case, by the stochastic integral $ \int _ {0} ^ {t} H _ {s} dX _ {s} $( | ||
+ | or $ ( H \cdot X) _ {t} $, | ||
+ | or $ \int _ {( t,0] } H _ {s} dX _ {s} $) | ||
+ | one understands the variable | ||
− | a) | + | $$ |
+ | h ( \omega ) ( X _ {b\wedge} t - X _ {a\wedge} t ). | ||
+ | $$ | ||
− | + | The mapping $ H \mapsto H \cdot X $, | |
+ | where | ||
− | + | $$ | |
+ | H \cdot X = ( H \cdot X) _ {t} ,\ t \geq 0, | ||
+ | $$ | ||
− | + | permits an extension (also denoted by $ H \cdot X $) | |
+ | onto the set of all bounded predictable functions, which possesses the following properties: | ||
− | + | a) the process $ ( H \cdot X) _ {t} $, | |
+ | $ t \geq 0 $, | ||
+ | is continuous from the right and has limits from the left; | ||
+ | |||
+ | b) $ H \mapsto H \cdot X $ | ||
+ | is linear, i.e. | ||
+ | |||
+ | $$ | ||
+ | ( cH _ {1} + H _ {2} ) \cdot X = c( H _ {1} \cdot X) + H _ {2} \cdot X; | ||
+ | $$ | ||
+ | |||
+ | c) If $ \{ H ^ {n} \} $ | ||
+ | is a sequence of uniformly-bounded predictable functions, $ H $ | ||
+ | is a predictable function and | ||
+ | |||
+ | $$ | ||
+ | \sup _ { s\leq } t | H _ {s} ^ {n} - H _ {s} | \mathop \rightarrow \limits ^ {\mathsf P} 0,\ t > | ||
+ | 0, | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | ( H ^ {n} \cdot X) _ {t} \mathop \rightarrow \limits ^ {\mathsf P} ( H \cdot X) _ {t} ,\ t > 0. | ||
+ | $$ | ||
− | The extension | + | The extension $ H \cdot X $ |
+ | is therefore unique in the sense that if $ H \mapsto \alpha ( H) $ | ||
+ | is another mapping with the properties a)–c), then $ H \cdot X $ | ||
+ | and $ \alpha ( H) $ | ||
+ | are stochastically indistinguishable (cf. [[Stochastic indistinguishability|Stochastic indistinguishability]]). | ||
The definition | The definition | ||
− | + | $$ | |
+ | ( H \cdot X) _ {t} = h( \omega )( X _ {b\wedge} t - X _ {a\wedge} t ), | ||
+ | $$ | ||
− | given for functions | + | given for functions $ H _ {t} = h( \omega ) I _ {( a,b] } ( t) $ |
+ | holds for any process $ X $, | ||
+ | not only for semi-martingales. The extension $ H \cdot X $ | ||
+ | with properties a)–c) onto the class of bounded predictable processes is only possible for the case where $ X $ | ||
+ | is a semi-martingale. In this sense, the class of semi-martingales is the maximal class for which a stochastic integral with the natural properties a)–c) is defined. | ||
− | If | + | If $ X $ |
+ | is a semi-martingale and $ T = T( \omega ) $ | ||
+ | is a Markov time (stopping time), then the "stopped" process $ X ^ {T} = ( X _ {t\wedge} T , {\mathcal F} _ {t} ) $ | ||
+ | is also a semi-martingale and for every predictable bounded process $ H $, | ||
− | + | $$ | |
+ | ( H \cdot X) ^ {T} = H \cdot X ^ {T} = \ | ||
+ | ( HI _ {[[ 0,T ]] } ) \cdot X . | ||
+ | $$ | ||
− | This property enables one to extend the definition of a stochastic integral to the case of locally-bounded predictable functions | + | This property enables one to extend the definition of a stochastic integral to the case of locally-bounded predictable functions $ H $. |
+ | If $ T _ {n} $ | ||
+ | is a localizing (for $ H $) | ||
+ | sequence of Markov times, then the $ H ^ {T _ {n} } $ | ||
+ | are bounded. Hence, the $ H \cdot I _ {[[ 0,T _ {n} ]] } $ | ||
+ | are bounded and | ||
− | + | $$ | |
+ | [ ( HI _ {[[ 0, T _ {n+1} ]] } ) \cdot X ] ^ {T _ {n} } | ||
+ | $$ | ||
− | is stochastically indistinguishable from | + | is stochastically indistinguishable from $ HI _ {[[ 0,T _ {n} ]] } \cdot X $. |
+ | A process $ H \cdot X $, | ||
+ | again called a stochastic integral, therefore exists, such that | ||
− | + | $$ | |
+ | ( H \cdot X) ^ {T _ {n} } = \ | ||
+ | HI _ {[[ 0,T _ {n} ]] } \cdot X,\ n \geq 0. | ||
+ | $$ | ||
− | The constructed stochastic integral | + | The constructed stochastic integral $ H \cdot X $ |
+ | possesses the following properties: $ H \cdot X $ | ||
+ | is a semi-martingale; the mapping $ H \mapsto H \cdot X $ | ||
+ | is linear; if $ X $ | ||
+ | is a process of locally bounded variation, then so is the integral $ H \cdot X $, | ||
+ | and $ H \cdot X $ | ||
+ | then coincides with the Stieltjes integral of $ H $ | ||
+ | with respect to $ dX $; | ||
+ | $ \Delta ( H \cdot X) = H \Delta X $; | ||
+ | $ K \cdot ( H \cdot X) = ( KH) \cdot X $. | ||
− | Depending on extra assumptions concerning | + | Depending on extra assumptions concerning $ X $, |
+ | the stochastic integral $ H \cdot X $ | ||
+ | can also be defined for broader classes of functions $ H $. | ||
+ | For example, if $ X $ | ||
+ | is a locally square-integrable martingale, then a stochastic integral $ H \cdot X $( | ||
+ | with the properties a)–c)) can be defined for any predictable process $ H $ | ||
+ | that possesses the property that the process | ||
− | + | $$ | |
+ | \left ( \int\limits _ { 0 } ^ { t } H _ {s} ^ {2} d\langle X\rangle _ {s} \right ) _ {t \geq 0 } | ||
+ | $$ | ||
− | is locally integrable (here | + | is locally integrable (here $ \langle X\rangle $ |
+ | is the quadratic variation of $ X $, | ||
+ | i.e. the predictable increasing process such that $ X ^ {2} - \langle X\rangle $ | ||
+ | is a local martingale). | ||
====References==== | ====References==== | ||
− | + | {| | |
− | + | |valign="top"|{{Ref|J}}|| J. Jacod, "Calcul stochastique et problèmes de martingales" , ''Lect. notes in math.'' , '''714''' , Springer (1979) {{MR|0542115}} {{ZBL|0414.60053}} | |
− | + | |- | |
+ | |valign="top"|{{Ref|DM}}|| C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A-C''' , North-Holland (1978–1988) (Translated from French) {{MR|0939365}} {{MR|0898005}} {{MR|0727641}} {{MR|0745449}} {{MR|0566768}} {{MR|0521810}} {{ZBL|0716.60001}} {{ZBL|0494.60002}} {{ZBL|0494.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|LS}}|| R.Sh. Liptser, A.N. Shiryayev, "Theory of martingales" , Kluwer (1989) (Translated from Russian) {{MR|1022664}} {{ZBL|0728.60048}} | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
− | The result alluded to above, that semi-martingales constitute the widest viable class of stochastic integrators, is the Bichteler–Dellacherie theorem | + | The result alluded to above, that semi-martingales constitute the widest viable class of stochastic integrators, is the Bichteler–Dellacherie theorem {{Cite|B}}–{{Cite|D}}, and can be formulated as follows {{Cite|P}}, Thm. III.22. Call a process elementary predictable if it has a representation |
− | + | $$ | |
+ | H _ {t} = H _ {0} I _ {\{ 0 \} } ( t)+ \sum _ { i=1} ^ { n } H _ {i} I _ {( T _ {i} , T _ {i+1} ] } ( t) , | ||
+ | $$ | ||
− | where | + | where $ 0 = T _ {0} \leq T _ {1} \leq \dots \leq T _ {n+1} < \infty $ |
+ | are stopping times and $ H _ {i} $ | ||
+ | is $ {\mathcal F} _ {T _ {i} } $- | ||
+ | measurable with $ | H _ {i} | < \infty $ | ||
+ | a.s., $ 0< i< n $. | ||
+ | Let $ E $ | ||
+ | be the set of elementary predictable processes, topologized by uniform convergence in $ ( t, \omega ) $. | ||
+ | Let $ L ^ {0} $ | ||
+ | be the set of finite-valued random variables, topologized by convergence in probability. Fix a stochastic process $ X $ | ||
+ | and for each stopping time $ T $ | ||
+ | define a mapping $ I _ {X} ^ {T} : E \rightarrow L ^ {0} $ | ||
+ | by | ||
− | + | $$ | |
+ | I _ {X} ^ {T} ( H) = H _ {0} X _ {0} ^ {T} + \sum _ { i=1} ^ { n } H _ {i} ( X _ {T _ {i+1} } ^ {T} - X _ {T _ {i} } ^ {T} ), | ||
+ | $$ | ||
− | where | + | where $ X ^ {T} $ |
+ | denotes the process $ X _ {t} ^ {T} = X _ {t\wedge T } $. | ||
+ | Say that "X has the property (C)" if $ I _ {X} ^ {T} $ | ||
+ | is continuous for all stopping times. | ||
− | The Bichteler–Dellacherie theorem: | + | The Bichteler–Dellacherie theorem: $ X $ |
+ | has property (C) if and only if $ X $ | ||
+ | is a semi-martingale. | ||
− | Since the topology on | + | Since the topology on $ E $ |
+ | is very strong and that on $ L ^ {0} $ | ||
+ | very weak, property (C) is a minimal requirement if the definition of $ I _ {X} ^ {T} $ | ||
+ | is to be extended beyond $ E $. | ||
− | It is possible to use property (C) as the definition of a semi-martingale, and to develop the theory of stochastic integration from this point of view | + | It is possible to use property (C) as the definition of a semi-martingale, and to develop the theory of stochastic integration from this point of view {{Cite|P}}. There are many excellent textbook expositions of stochastic integration from the conventional point of view; see, e.g., {{Cite|CW}}–{{Cite|RW}}. |
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|B}}|| K. Bichteler, "Stochastic integrators" ''Bull. Amer. Math. Soc.'' , '''1''' (1979) pp. 761–765 {{MR|0537627}} {{ZBL|0416.60066}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|B2}}|| K. Bichteler, "Stochastic integrators and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090130/s09013088.png" /> theory of semimartingales" ''Ann. Probab.'' , '''9''' (1981) pp. 49–89 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|D}}|| C. Dellacherie, "Un survol de la théorie de l'intégrale stochastique" ''Stoch. Proc. & Appl.'' , '''10''' (1980) pp. 115–144 {{MR|0587420}} {{MR|0562680}} {{MR|0577985}} {{ZBL|0436.60043}} {{ZBL|0429.60053}} {{ZBL|0427.60055}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|P}}|| P. Protter, "Stochastic integration and differential equations" , Springer (1990) {{MR|1037262}} {{ZBL|0694.60047}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|CW}}|| K.L. Chung, R.J. Williams, "Introduction to stochastic integration" , Birkhäuser (1990) {{MR|1102676}} {{ZBL|0725.60050}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|E}}|| R.J. Elliott, "Stochastic calculus and applications" , Springer (1982) {{MR|0678919}} {{ZBL|0503.60062}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|KS}}|| I. Karatzas, S.E. Shreve, "Brownian motion and stochastic calculus" , Springer (1988) {{MR|0917065}} {{ZBL|0638.60065}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|RW}}|| L.C.G. Rogers, D. Williams, "Diffusions, Markov processes and martingales" , '''II. Ito calculus''' , Wiley (1987) {{MR|0921238}} {{ZBL|0627.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|McK}}|| H.P. McKean jr., "Stochastic integrals" , Acad. Press (1969) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|MP}}|| M. Metivier, J. Pellaumail, "Stochastic integration" , Acad. Press (1980) {{MR|0578177}} {{ZBL|0463.60004}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|McSh}}|| E.J. McShane, "Stochastic calculus and stochastic models" , Acad. Press (1974) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|R}}|| M.M. Rao, "Stochastic processes and integration" , Sijthoff & Noordhoff (1979) {{MR|0546709}} {{ZBL|0429.60001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|SV}}|| D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) {{MR|0532498}} {{ZBL|0426.60069}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|K}}|| P.E. Kopp, "Martingales and stochastic integrals" , Cambridge Univ. Press (1984) {{MR|0774050}} {{ZBL|0537.60047}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|F}}|| M. Fukushima, "Dirichlet forms and Markov processes" , North-Holland (1980) {{MR|0569058}} {{ZBL|0422.31007}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|AFHL}}|| S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, T. Lindstrøm, "Nonstandard methods in stochastic analysis and mathematical physics" , Acad. Press (1986) {{MR|0859372}} {{ZBL|0605.60005}} | ||
+ | |} |
Latest revision as of 19:10, 9 January 2024
2020 Mathematics Subject Classification: Primary: 60H05 [MSN][ZBL]
An integral "∫ H dX" with respect to a semi-martingale $ X $ on some stochastic basis $ ( \Omega , {\mathcal F} , ( {\mathcal F} _ {t} ) _ {t} , {\mathsf P} ) $, defined for every locally bounded predictable process $ H = ( H _ {t} , {\mathcal F} _ {t} ) $. One of the possible constructions of a stochastic integral is as follows. At first a stochastic integral is defined for simple predictable processes $ H $, of the form
$$ H _ {t} = h( \omega ) I _ {( a,b] } ( t),\ a < b, $$
where $ h $ is $ {\mathcal F} _ {a} $- measurable. In this case, by the stochastic integral $ \int _ {0} ^ {t} H _ {s} dX _ {s} $( or $ ( H \cdot X) _ {t} $, or $ \int _ {( t,0] } H _ {s} dX _ {s} $) one understands the variable
$$ h ( \omega ) ( X _ {b\wedge} t - X _ {a\wedge} t ). $$
The mapping $ H \mapsto H \cdot X $, where
$$ H \cdot X = ( H \cdot X) _ {t} ,\ t \geq 0, $$
permits an extension (also denoted by $ H \cdot X $) onto the set of all bounded predictable functions, which possesses the following properties:
a) the process $ ( H \cdot X) _ {t} $, $ t \geq 0 $, is continuous from the right and has limits from the left;
b) $ H \mapsto H \cdot X $ is linear, i.e.
$$ ( cH _ {1} + H _ {2} ) \cdot X = c( H _ {1} \cdot X) + H _ {2} \cdot X; $$
c) If $ \{ H ^ {n} \} $ is a sequence of uniformly-bounded predictable functions, $ H $ is a predictable function and
$$ \sup _ { s\leq } t | H _ {s} ^ {n} - H _ {s} | \mathop \rightarrow \limits ^ {\mathsf P} 0,\ t > 0, $$
then
$$ ( H ^ {n} \cdot X) _ {t} \mathop \rightarrow \limits ^ {\mathsf P} ( H \cdot X) _ {t} ,\ t > 0. $$
The extension $ H \cdot X $ is therefore unique in the sense that if $ H \mapsto \alpha ( H) $ is another mapping with the properties a)–c), then $ H \cdot X $ and $ \alpha ( H) $ are stochastically indistinguishable (cf. Stochastic indistinguishability).
The definition
$$ ( H \cdot X) _ {t} = h( \omega )( X _ {b\wedge} t - X _ {a\wedge} t ), $$
given for functions $ H _ {t} = h( \omega ) I _ {( a,b] } ( t) $ holds for any process $ X $, not only for semi-martingales. The extension $ H \cdot X $ with properties a)–c) onto the class of bounded predictable processes is only possible for the case where $ X $ is a semi-martingale. In this sense, the class of semi-martingales is the maximal class for which a stochastic integral with the natural properties a)–c) is defined.
If $ X $ is a semi-martingale and $ T = T( \omega ) $ is a Markov time (stopping time), then the "stopped" process $ X ^ {T} = ( X _ {t\wedge} T , {\mathcal F} _ {t} ) $ is also a semi-martingale and for every predictable bounded process $ H $,
$$ ( H \cdot X) ^ {T} = H \cdot X ^ {T} = \ ( HI _ {[[ 0,T ]] } ) \cdot X . $$
This property enables one to extend the definition of a stochastic integral to the case of locally-bounded predictable functions $ H $. If $ T _ {n} $ is a localizing (for $ H $) sequence of Markov times, then the $ H ^ {T _ {n} } $ are bounded. Hence, the $ H \cdot I _ {[[ 0,T _ {n} ]] } $ are bounded and
$$ [ ( HI _ {[[ 0, T _ {n+1} ]] } ) \cdot X ] ^ {T _ {n} } $$
is stochastically indistinguishable from $ HI _ {[[ 0,T _ {n} ]] } \cdot X $. A process $ H \cdot X $, again called a stochastic integral, therefore exists, such that
$$ ( H \cdot X) ^ {T _ {n} } = \ HI _ {[[ 0,T _ {n} ]] } \cdot X,\ n \geq 0. $$
The constructed stochastic integral $ H \cdot X $ possesses the following properties: $ H \cdot X $ is a semi-martingale; the mapping $ H \mapsto H \cdot X $ is linear; if $ X $ is a process of locally bounded variation, then so is the integral $ H \cdot X $, and $ H \cdot X $ then coincides with the Stieltjes integral of $ H $ with respect to $ dX $; $ \Delta ( H \cdot X) = H \Delta X $; $ K \cdot ( H \cdot X) = ( KH) \cdot X $.
Depending on extra assumptions concerning $ X $, the stochastic integral $ H \cdot X $ can also be defined for broader classes of functions $ H $. For example, if $ X $ is a locally square-integrable martingale, then a stochastic integral $ H \cdot X $( with the properties a)–c)) can be defined for any predictable process $ H $ that possesses the property that the process
$$ \left ( \int\limits _ { 0 } ^ { t } H _ {s} ^ {2} d\langle X\rangle _ {s} \right ) _ {t \geq 0 } $$
is locally integrable (here $ \langle X\rangle $ is the quadratic variation of $ X $, i.e. the predictable increasing process such that $ X ^ {2} - \langle X\rangle $ is a local martingale).
References
[J] | J. Jacod, "Calcul stochastique et problèmes de martingales" , Lect. notes in math. , 714 , Springer (1979) MR0542115 Zbl 0414.60053 |
[DM] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , A-C , North-Holland (1978–1988) (Translated from French) MR0939365 MR0898005 MR0727641 MR0745449 MR0566768 MR0521810 Zbl 0716.60001 Zbl 0494.60002 Zbl 0494.60001 |
[LS] | R.Sh. Liptser, A.N. Shiryayev, "Theory of martingales" , Kluwer (1989) (Translated from Russian) MR1022664 Zbl 0728.60048 |
Comments
The result alluded to above, that semi-martingales constitute the widest viable class of stochastic integrators, is the Bichteler–Dellacherie theorem [B]–[D], and can be formulated as follows [P], Thm. III.22. Call a process elementary predictable if it has a representation
$$ H _ {t} = H _ {0} I _ {\{ 0 \} } ( t)+ \sum _ { i=1} ^ { n } H _ {i} I _ {( T _ {i} , T _ {i+1} ] } ( t) , $$
where $ 0 = T _ {0} \leq T _ {1} \leq \dots \leq T _ {n+1} < \infty $ are stopping times and $ H _ {i} $ is $ {\mathcal F} _ {T _ {i} } $- measurable with $ | H _ {i} | < \infty $ a.s., $ 0< i< n $. Let $ E $ be the set of elementary predictable processes, topologized by uniform convergence in $ ( t, \omega ) $. Let $ L ^ {0} $ be the set of finite-valued random variables, topologized by convergence in probability. Fix a stochastic process $ X $ and for each stopping time $ T $ define a mapping $ I _ {X} ^ {T} : E \rightarrow L ^ {0} $ by
$$ I _ {X} ^ {T} ( H) = H _ {0} X _ {0} ^ {T} + \sum _ { i=1} ^ { n } H _ {i} ( X _ {T _ {i+1} } ^ {T} - X _ {T _ {i} } ^ {T} ), $$
where $ X ^ {T} $ denotes the process $ X _ {t} ^ {T} = X _ {t\wedge T } $. Say that "X has the property (C)" if $ I _ {X} ^ {T} $ is continuous for all stopping times.
The Bichteler–Dellacherie theorem: $ X $ has property (C) if and only if $ X $ is a semi-martingale.
Since the topology on $ E $ is very strong and that on $ L ^ {0} $ very weak, property (C) is a minimal requirement if the definition of $ I _ {X} ^ {T} $ is to be extended beyond $ E $.
It is possible to use property (C) as the definition of a semi-martingale, and to develop the theory of stochastic integration from this point of view [P]. There are many excellent textbook expositions of stochastic integration from the conventional point of view; see, e.g., [CW]–[RW].
References
[B] | K. Bichteler, "Stochastic integrators" Bull. Amer. Math. Soc. , 1 (1979) pp. 761–765 MR0537627 Zbl 0416.60066 |
[B2] | K. Bichteler, "Stochastic integrators and the theory of semimartingales" Ann. Probab. , 9 (1981) pp. 49–89 |
[D] | C. Dellacherie, "Un survol de la théorie de l'intégrale stochastique" Stoch. Proc. & Appl. , 10 (1980) pp. 115–144 MR0587420 MR0562680 MR0577985 Zbl 0436.60043 Zbl 0429.60053 Zbl 0427.60055 |
[P] | P. Protter, "Stochastic integration and differential equations" , Springer (1990) MR1037262 Zbl 0694.60047 |
[CW] | K.L. Chung, R.J. Williams, "Introduction to stochastic integration" , Birkhäuser (1990) MR1102676 Zbl 0725.60050 |
[E] | R.J. Elliott, "Stochastic calculus and applications" , Springer (1982) MR0678919 Zbl 0503.60062 |
[KS] | I. Karatzas, S.E. Shreve, "Brownian motion and stochastic calculus" , Springer (1988) MR0917065 Zbl 0638.60065 |
[RW] | L.C.G. Rogers, D. Williams, "Diffusions, Markov processes and martingales" , II. Ito calculus , Wiley (1987) MR0921238 Zbl 0627.60001 |
[McK] | H.P. McKean jr., "Stochastic integrals" , Acad. Press (1969) |
[MP] | M. Metivier, J. Pellaumail, "Stochastic integration" , Acad. Press (1980) MR0578177 Zbl 0463.60004 |
[McSh] | E.J. McShane, "Stochastic calculus and stochastic models" , Acad. Press (1974) |
[R] | M.M. Rao, "Stochastic processes and integration" , Sijthoff & Noordhoff (1979) MR0546709 Zbl 0429.60001 |
[SV] | D.W. Stroock, S.R.S. Varadhan, "Multidimensional diffusion processes" , Springer (1979) MR0532498 Zbl 0426.60069 |
[K] | P.E. Kopp, "Martingales and stochastic integrals" , Cambridge Univ. Press (1984) MR0774050 Zbl 0537.60047 |
[F] | M. Fukushima, "Dirichlet forms and Markov processes" , North-Holland (1980) MR0569058 Zbl 0422.31007 |
[AFHL] | S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, T. Lindstrøm, "Nonstandard methods in stochastic analysis and mathematical physics" , Acad. Press (1986) MR0859372 Zbl 0605.60005 |
Stochastic integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_integral&oldid=15041