|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | A left-invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629001.png" />-form on a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629002.png" />, i.e. a differential form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629003.png" /> of degree 1 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629004.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629005.png" /> for any left translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629006.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629007.png" />. The Maurer–Cartan forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629008.png" /> are in one-to-one correspondence with the linear forms on the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m0629009.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290010.png" />; specifically, the mapping which sends each Maurer–Cartan form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290011.png" /> to its value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290012.png" /> is an isomorphism of the space of Maurer–Cartan forms onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290013.png" />. The differential of a Maurer–Cartan form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290014.png" /> is a left-invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290015.png" />-form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290016.png" />, defined by the formula
| + | <!-- |
| + | m0629001.png |
| + | $#A+1 = 50 n = 0 |
| + | $#C+1 = 50 : ~/encyclopedia/old_files/data/M062/M.0602900 Maurer\ANDCartan form |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290018.png" /> are arbitrary left-invariant vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290019.png" />. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290020.png" /> is a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290021.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290023.png" />, be Maurer–Cartan forms such that
| + | A left-invariant $ 1 $- |
| + | form on a Lie group $ G $, |
| + | i.e. a differential form $ \omega $ |
| + | of degree 1 on $ G $ |
| + | satisfying the condition $ l _ {g} ^ \star \omega = \omega $ |
| + | for any left translation $ l _ {g} : x \rightarrow gx $, |
| + | $ g, x \in G $. |
| + | The Maurer–Cartan forms on $ G $ |
| + | are in one-to-one correspondence with the linear forms on the tangent space $ T _ {e} ( G) $ |
| + | at the point $ e $; |
| + | specifically, the mapping which sends each Maurer–Cartan form $ \omega $ |
| + | to its value $ \omega _ {e} \in T _ {e} ( G) ^ \star $ |
| + | is an isomorphism of the space of Maurer–Cartan forms onto $ T _ {e} ( G) ^ \star $. |
| + | The differential of a Maurer–Cartan form $ \omega $ |
| + | is a left-invariant $ 2 $- |
| + | form on $ G $, |
| + | defined by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290024.png" /></td> </tr></table>
| + | $$ \tag{1 } |
| + | d \omega ( X, Y) = - \omega ([ X, Y]), |
| + | $$ |
| + | |
| + | where $ X, Y $ |
| + | are arbitrary left-invariant vector fields on $ G $. |
| + | Suppose that $ X _ {1} \dots X _ {n} $ |
| + | is a basis in $ T _ {e} ( G) $ |
| + | and let $ \omega _ {i} $, |
| + | $ i = 1 \dots n $, |
| + | be Maurer–Cartan forms such that |
| + | |
| + | $$ |
| + | ( \omega _ {i} ) _ {e} ( X _ {j} ) = \delta _ {ij} ,\ \ |
| + | j = 1 \dots n. |
| + | $$ |
| | | |
| Then | | Then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
| + | d \omega_{i} = - \sum_{j,k=1} ^ { n } c_{jk} ^ {i} \omega_{j} \wedge \omega_k , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290026.png" /> are the structure constants of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290028.png" /> consisting of the left-invariant vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290029.png" />, with respect to the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290030.png" /> determined by | + | where $ c _ {jk} ^ {i} $ |
| + | are the structure constants of the Lie algebra $ \mathfrak g $ |
| + | of $ G $ |
| + | consisting of the left-invariant vector fields on $ G $, |
| + | with respect to the basis $ \widetilde{X} _ {1} \dots \widetilde{X} _ {n} $ |
| + | determined by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290031.png" /></td> </tr></table>
| + | $$ |
| + | ( \widetilde{X} _ {i} ) _ {e} = X _ {i} ,\ \ |
| + | i = 1 \dots n. |
| + | $$ |
| | | |
− | The equalities (2) (or (1)) are called the Maurer–Cartan equations. They were first obtained (in a different, yet equivalent form) by L. Maurer [[#References|[1]]]. The forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290032.png" /> were introduced by E. Cartan in 1904 (see [[#References|[2]]]). | + | The equalities (2) (or (1)) are called the Maurer–Cartan equations. They were first obtained (in a different, yet equivalent form) by L. Maurer [[#References|[1]]]. The forms $ \omega _ {i} $ |
| + | were introduced by E. Cartan in 1904 (see [[#References|[2]]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290033.png" /> be the canonical coordinates in a neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290034.png" /> determined by the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290035.png" />. Then the forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290036.png" /> are written in the form | + | Let $ x _ {1} \dots x _ {n} $ |
| + | be the canonical coordinates in a neighbourhood of the point $ e \in G $ |
| + | determined by the basis $ X _ {1} \dots X _ {n} $. |
| + | Then the forms $ \omega _ {i} $ |
| + | are written in the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290037.png" /></td> </tr></table>
| + | $$ |
| + | \omega _ {i} = \sum _ {j=1} ^ { n } A _ {ij} ( x _ {1} \dots x _ {n} ) dx _ {j} , |
| + | $$ |
| | | |
| in which the matrix | | in which the matrix |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290038.png" /></td> </tr></table>
| + | $$ |
| + | A( x _ {1} \dots x _ {n} ) = \ |
| + | ( A _ {ij} ( x _ {1} \dots x _ {n} )) |
| + | $$ |
| | | |
| is calculated by the formula | | is calculated by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290039.png" /></td> </tr></table>
| + | $$ |
| + | A( x _ {1} \dots x _ {n} ) = \ |
| + | |
| + | \frac{1- e ^ {- \mathop{\rm ad} X } }{ \mathop{\rm ad} X } |
| + | , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290041.png" /> is the adjoint representation of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290042.png" />. | + | where $ X = \sum_{i=1}^ {n} x _ {i} \widetilde{X} _ {i} $ |
| + | and $ \mathop{\rm ad} $ |
| + | is the adjoint representation of the Lie algebra $ \mathfrak g $. |
| | | |
− | Furthermore, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290043.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290044.png" />-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290045.png" />-form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290046.png" /> which assigns to each tangent vector to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290047.png" /> the unique left-invariant vector field containing this vector (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290048.png" /> is called the canonical left differential form). Then | + | Furthermore, let $ \theta $ |
| + | be the $ \mathfrak g $- |
| + | valued $ 1 $- |
| + | form on $ G $ |
| + | which assigns to each tangent vector to $ G $ |
| + | the unique left-invariant vector field containing this vector ( $ \theta $ |
| + | is called the canonical left differential form). Then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290049.png" /></td> </tr></table>
| + | $$ |
| + | \theta = \sum_{i=1}^ { n } \widetilde{X} _ {i} \omega _ {i} $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062900/m06290050.png" /></td> </tr></table>
| + | $$ |
| + | d \theta + |
| + | \frac{1}{2} |
| + | [ \theta , \theta ] = 0, |
| + | $$ |
| | | |
| which is yet another way of writing the Maurer–Cartan equations. | | which is yet another way of writing the Maurer–Cartan equations. |
A left-invariant $ 1 $-
form on a Lie group $ G $,
i.e. a differential form $ \omega $
of degree 1 on $ G $
satisfying the condition $ l _ {g} ^ \star \omega = \omega $
for any left translation $ l _ {g} : x \rightarrow gx $,
$ g, x \in G $.
The Maurer–Cartan forms on $ G $
are in one-to-one correspondence with the linear forms on the tangent space $ T _ {e} ( G) $
at the point $ e $;
specifically, the mapping which sends each Maurer–Cartan form $ \omega $
to its value $ \omega _ {e} \in T _ {e} ( G) ^ \star $
is an isomorphism of the space of Maurer–Cartan forms onto $ T _ {e} ( G) ^ \star $.
The differential of a Maurer–Cartan form $ \omega $
is a left-invariant $ 2 $-
form on $ G $,
defined by the formula
$$ \tag{1 }
d \omega ( X, Y) = - \omega ([ X, Y]),
$$
where $ X, Y $
are arbitrary left-invariant vector fields on $ G $.
Suppose that $ X _ {1} \dots X _ {n} $
is a basis in $ T _ {e} ( G) $
and let $ \omega _ {i} $,
$ i = 1 \dots n $,
be Maurer–Cartan forms such that
$$
( \omega _ {i} ) _ {e} ( X _ {j} ) = \delta _ {ij} ,\ \
j = 1 \dots n.
$$
Then
$$ \tag{2 }
d \omega_{i} = - \sum_{j,k=1} ^ { n } c_{jk} ^ {i} \omega_{j} \wedge \omega_k ,
$$
where $ c _ {jk} ^ {i} $
are the structure constants of the Lie algebra $ \mathfrak g $
of $ G $
consisting of the left-invariant vector fields on $ G $,
with respect to the basis $ \widetilde{X} _ {1} \dots \widetilde{X} _ {n} $
determined by
$$
( \widetilde{X} _ {i} ) _ {e} = X _ {i} ,\ \
i = 1 \dots n.
$$
The equalities (2) (or (1)) are called the Maurer–Cartan equations. They were first obtained (in a different, yet equivalent form) by L. Maurer [1]. The forms $ \omega _ {i} $
were introduced by E. Cartan in 1904 (see [2]).
Let $ x _ {1} \dots x _ {n} $
be the canonical coordinates in a neighbourhood of the point $ e \in G $
determined by the basis $ X _ {1} \dots X _ {n} $.
Then the forms $ \omega _ {i} $
are written in the form
$$
\omega _ {i} = \sum _ {j=1} ^ { n } A _ {ij} ( x _ {1} \dots x _ {n} ) dx _ {j} ,
$$
in which the matrix
$$
A( x _ {1} \dots x _ {n} ) = \
( A _ {ij} ( x _ {1} \dots x _ {n} ))
$$
is calculated by the formula
$$
A( x _ {1} \dots x _ {n} ) = \
\frac{1- e ^ {- \mathop{\rm ad} X } }{ \mathop{\rm ad} X }
,
$$
where $ X = \sum_{i=1}^ {n} x _ {i} \widetilde{X} _ {i} $
and $ \mathop{\rm ad} $
is the adjoint representation of the Lie algebra $ \mathfrak g $.
Furthermore, let $ \theta $
be the $ \mathfrak g $-
valued $ 1 $-
form on $ G $
which assigns to each tangent vector to $ G $
the unique left-invariant vector field containing this vector ( $ \theta $
is called the canonical left differential form). Then
$$
\theta = \sum_{i=1}^ { n } \widetilde{X} _ {i} \omega _ {i} $$
and
$$
d \theta +
\frac{1}{2}
[ \theta , \theta ] = 0,
$$
which is yet another way of writing the Maurer–Cartan equations.
References
[1] | L. Maurer, Sitzungsber. Bayer. Akad. Wiss. Math. Phys. Kl. (München) , 18 (1879) pp. 103–150 |
[2] | E. Cartan, "Sur la structure des groupes infinis de transformations" Ann. Ecole Norm. , 21 (1904) pp. 153–206 |
[3] | C. Chevalley, "Theory of Lie groups" , 1 , Princeton Univ. Press (1946) |
[4] | N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French) |
[5] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |