|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | d0338801.png |
| + | $#A+1 = 100 n = 0 |
| + | $#C+1 = 100 : ~/encyclopedia/old_files/data/D033/D.0303880 Double\AAhlayer potential |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| An expression of the type | | An expression of the type |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338801.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ \tag{1 } |
| + | u ( x) = \int\limits _ \Gamma |
| + | \frac \partial {\partial n _ {y} } |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338802.png" /> is the boundary of an arbitrary bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338803.png" />-dimensional domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338804.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338805.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338806.png" /> is the exterior normal to the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338807.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338808.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d0338809.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388010.png" /> is the potential density, which is a function defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388011.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388012.png" /> is a fundamental solution of the Laplace equation:
| + | ( h ( r _ {xy} )) \mu ( y) ds _ {y} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | where $ \Gamma $ |
| + | is the boundary of an arbitrary bounded $ N $- |
| + | dimensional domain $ G \subset \mathbf R ^ {N} $, |
| + | $ N \geq 2 $, |
| + | and $ n _ {y} $ |
| + | is the exterior normal to the boundary $ \Gamma $ |
| + | of $ G $ |
| + | at a point $ y $; |
| + | $ \mu $ |
| + | is the potential density, which is a function defined on $ \Gamma $; |
| + | $ h $ |
| + | is a fundamental solution of the Laplace equation: |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388014.png" /> is the area of the surface of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388015.png" />-dimensional unit sphere, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388016.png" /> is the distance between two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388018.png" />. The boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388019.png" /> is of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388020.png" />; it is a Lyapunov surface or a Lyapunov arc (cf. [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]).
| + | $$ \tag{2 } |
| + | h ( r _ {xy} ) = \left \{ |
| | | |
− | Expression (1) may be interpreted as the potential produced by dipoles located on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388021.png" />, the direction of which at any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388022.png" /> coincides with that of the exterior normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388023.png" />, while its intensity is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388024.png" />.
| + | \begin{array}{ll} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388025.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388026.png" /> is defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388027.png" /> (in particular, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388028.png" />) and displays the following properties.
| + | \frac{1}{( N - 2 ) \omega _ {N} } |
| + | r _ {xy} ^ {2-} N , & N > 2 \\ |
| | | |
− | 1) The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388029.png" /> has derivatives of all orders <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388030.png" /> everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388031.png" /> and satisfies the Laplace equation, and the derivatives with respect to the coordinates of a point may be computed by differentiation of the integrand. | + | \frac{1}{2 \pi } |
| + | \mathop{\rm ln} |
| + | \frac{1}{r} _ {xy} , & N = 2 , \\ |
| + | \end{array} |
| | | |
− | 2) On passing through the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388032.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388033.png" /> undergoes a break. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388034.png" /> be an arbitrary point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388035.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388037.png" /> be the interior and exterior boundary values; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388038.png" /> exist and are equal to
| + | \right .$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | $ \omega _ {N} = 2 ( \sqrt \pi ) ^ {N} / \Gamma ( N / 2 ) $ |
| + | is the area of the surface of the $ ( N - 1 ) $- |
| + | dimensional unit sphere, and $ r _ {xy} = \sqrt {\sum _ {i=1} ^ {N} ( x _ {i} - y _ {i} ) ^ {2} } $ |
| + | is the distance between two points $ x $ |
| + | and $ y \in \mathbf R ^ {N} $. |
| + | The boundary $ \Gamma $ |
| + | is of class $ C ^ {( 1 , \lambda ) } $; |
| + | it is a Lyapunov surface or a Lyapunov arc (cf. [[Lyapunov surfaces and curves]]). |
| | | |
− | and the integral in formula (3) as a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388040.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388041.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388042.png" />; also, the function equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388043.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388044.png" /> and to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388045.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388046.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388047.png" />, while the function equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388048.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388049.png" /> and equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388050.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388051.png" /> is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388052.png" />.
| + | Expression (1) may be interpreted as the potential produced by dipoles located on $ \Gamma $, |
| + | the direction of which at any point $ y \in \Gamma $ |
| + | coincides with that of the exterior normal $ n _ {y} $, |
| + | while its intensity is equal to $ \mu ( y) $. |
| | | |
− | 3) If the density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388053.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388054.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388055.png" />, extended as in (2) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388056.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388057.png" />, is of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388058.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388059.png" /> or in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388060.png" />.
| + | If $ \mu \in C ^ {(} 0) ( \Gamma ) $, |
| + | then $ u $ |
| + | is defined on $ \mathbf R ^ {N} $( |
| + | in particular, on $ \Gamma $) |
| + | and displays the following properties. |
| | | |
− | 4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388061.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388063.png" /> are two points on the normal issuing from a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388064.png" /> and lying symmetric about <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388065.png" />, then
| + | 1) The function $ u $ |
| + | has derivatives of all orders $ ( \in C ^ {( \infty ) } ) $ |
| + | everywhere in $ \mathbf R ^ {N} \setminus \Gamma $ |
| + | and satisfies the Laplace equation, and the derivatives with respect to the coordinates of a point may be computed by differentiation of the integrand. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388066.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
| + | 2) On passing through the boundary $ \Gamma $ |
| + | the function $ u $ |
| + | undergoes a break. Let $ x _ {0} $ |
| + | be an arbitrary point on $ \Gamma $; |
| + | let $ u ^ {+} ( x _ {0} ) $ |
| + | and $ u ^ {-} ( x _ {0} ) $ |
| + | be the interior and exterior boundary values; then $ u ^ \pm ( x _ {0} ) $ |
| + | exist and are equal to |
| | | |
− | In particular, if one of the derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388068.png" /> exists, then the other derivative also exists and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388069.png" />. This is also true if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388071.png" />.
| + | $$ \tag{3 } |
| + | u ^ \pm ( x _ {0} ) = \pm |
| + | \frac{\mu ( x _ {0} ) }{2} |
| + | + |
| + | \int\limits _ \Gamma |
| + | \frac \partial {\partial n _ {y} } |
| | | |
− | The above properties can be generalized in various ways. The density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388072.png" /> may belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388074.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388076.png" /> outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388077.png" /> and it satisfies the Laplace equation, formula (3) and (4) apply for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388078.png" /> and the integral in (3) belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388079.png" />.
| + | ( h ( r _ {x _ {0} y } ) ) \mu ( y) ds _ {y} , |
| + | $$ |
| | | |
− | The properties of double-layer potentials, regarded as integrals with respect to an arbitrary measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388080.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388081.png" />, have also been studied:
| + | and the integral in formula (3) as a function of $ x _ {0} \in \Gamma $ |
| + | belongs to $ C ^ {( 0 , \alpha ) } $ |
| + | for any $ 0 \leq \alpha < 1 $; |
| + | also, the function equal to $ u $ |
| + | in $ G $ |
| + | and to $ u ^ {+} $ |
| + | on $ \Gamma $ |
| + | is continuous on $ G \cup \Gamma $, |
| + | while the function equal to $ u $ |
| + | in $ \mathbf R ^ {N} \setminus ( G \cup \Gamma ) $ |
| + | and equal to $ u ^ {-} $ |
| + | on $ \Gamma $ |
| + | is continuous in $ \mathbf R ^ {N} \setminus G $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388082.png" /></td> </tr></table>
| + | 3) If the density $ \mu \in C ^ {( 0, \alpha ) } $ |
| + | and if $ \alpha \leq \lambda $, |
| + | then $ u $, |
| + | extended as in (2) on $ G \cup \Gamma $ |
| + | or $ \mathbf R ^ {N} \setminus G $, |
| + | is of class $ C ^ {( 0, \alpha ) } $ |
| + | in $ G \cup \Gamma $ |
| + | or in $ \mathbf R ^ {N} \setminus G $. |
| | | |
− | Here, too, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388083.png" /> outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388084.png" /> and it satisfies the Laplace equation. Formulas (3) and (4) apply for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388085.png" /> with respect to the Lebesgue measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388086.png" /> after <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388087.png" /> has been replaced by the density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388088.png" />. In definition (1) the fundamental solution of the Laplace equation may be replaced by an arbitrary Lewy function for a general elliptic operator of the second order with variable coefficients, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388089.png" /> is replaced by the derivative with respect to the conormal. The properties listed above remain valid [[#References|[2]]].
| + | 4) If $ \alpha > 1 - \lambda $, |
| + | and $ x _ {1} $ |
| + | and $ x _ {2} $ |
| + | are two points on the normal issuing from a point $ x _ {0} $ |
| + | and lying symmetric about $ x _ {0} $, |
| + | then |
| | | |
− | The double-layer potential plays an important role in solving boundary value problems of elliptic equations. The representation of the solution of the (first) boundary value problem is sought as a double-layer potential with unknown density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388090.png" /> and an application of property (2) leads to a [[Fredholm equation|Fredholm equation]] of the second kind on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388091.png" /> in order to determine the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388092.png" /> [[#References|[1]]], [[#References|[2]]]. In solving boundary value problems for parabolic equations use is made of the concept of the thermal double layer potential, i.e. of an integral of the type
| + | $$ \tag{4 } |
| + | \lim\limits _ {x _ {1} \rightarrow x _ {0} } |
| + | \left ( |
| + | \frac{\partial u ( x _ {2} ) }{\partial n } |
| + | - |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388093.png" /></td> </tr></table>
| + | \frac{\partial u ( x _ {1} ) }{\partial n } |
| + | \right ) = 0. |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388094.png" /> is a fundamental solution of the thermal conductance (or heat) equation in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388095.png" />-dimensional space:
| + | In particular, if one of the derivatives $ \partial u ^ {+} ( x _ {0} ) / \partial n $, |
| + | $ \partial u ^ {-} ( x _ {0} ) / \partial n $ |
| + | exists, then the other derivative also exists and $ \partial u ^ {+} ( x _ {0} ) / \partial n = \partial u ^ {-} ( x _ {0} ) / \partial n $. |
| + | This is also true if $ \mu \in C ^ {(} 0) ( \Gamma ) $ |
| + | and $ \Gamma \in C ^ {(} 2) $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388096.png" /></td> </tr></table>
| + | The above properties can be generalized in various ways. The density $ \mu $ |
| + | may belong to $ L _ {p} ( \Gamma ) $, |
| + | $ p \geq 1 $. |
| + | Then $ u \in L _ {p} ( G \cup \Gamma ) $, |
| + | $ u \in C ^ {( \infty ) } $ |
| + | outside $ \Gamma $ |
| + | and it satisfies the Laplace equation, formula (3) and (4) apply for almost-all $ x _ {0} \in \Gamma $ |
| + | and the integral in (3) belongs to $ L _ {p} ( \Gamma ) $. |
| | | |
− | Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388097.png" /> is the potential density. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388098.png" /> and its generalization to the case of an arbitrary parabolic equation of the second order have properties which are similar to those described above for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d03388099.png" /> [[#References|[3]]], [[#References|[4]]], [[#References|[5]]].
| + | The properties of double-layer potentials, regarded as integrals with respect to an arbitrary measure $ \nu $ |
| + | defined on $ \Gamma $, |
| + | have also been studied: |
| | | |
− | ====References==== | + | $$ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.M. Günter, "Potential theory and its applications to basic problems of mathematical physics" , F. Ungar (1967) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''4''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR></table>
| + | u ( x) = \int\limits _ \Gamma |
| + | \frac \partial {\partial n _ {y} } |
| + | |
| + | ( h ( r _ {xy} ) ) d \nu ( y) . |
| + | $$ |
| + | |
| + | Here, too, $ u \in C ^ {( \infty ) } $ |
| + | outside $ \Gamma $ |
| + | and it satisfies the Laplace equation. Formulas (3) and (4) apply for almost-all $ x _ {0} \in \Gamma $ |
| + | with respect to the Lebesgue measure $ \nu $ |
| + | after $ \mu $ |
| + | has been replaced by the density $ \nu ^ \prime $. |
| + | In definition (1) the fundamental solution of the Laplace equation may be replaced by an arbitrary Lewy function for a general elliptic operator of the second order with variable coefficients, while $ \partial / \partial n _ {y} $ |
| + | is replaced by the derivative with respect to the conormal. The properties listed above remain valid [[#References|[2]]]. |
| + | |
| + | The double-layer potential plays an important role in solving boundary value problems of elliptic equations. The representation of the solution of the (first) boundary value problem is sought as a double-layer potential with unknown density $ \mu $ |
| + | and an application of property (2) leads to a [[Fredholm equation|Fredholm equation]] of the second kind on $ \Gamma $ |
| + | in order to determine the function $ \mu $[[#References|[1]]], [[#References|[2]]]. In solving boundary value problems for parabolic equations use is made of the concept of the thermal double layer potential, i.e. of an integral of the type |
| + | |
| + | $$ |
| + | \nu ( x , t ) = \int\limits _ { 0 } ^ { t } d \tau \int\limits _ \Gamma |
| + | |
| + | \frac \partial {\partial n _ {y} } |
| + | ( G ( x, t; y, \tau ) ) |
| + | \sigma ( y, \tau ) dy , |
| + | $$ |
| + | |
| + | where $ G ( x, t; y , \tau ) $ |
| + | is a fundamental solution of the thermal conductance (or heat) equation in an $ N $- |
| + | dimensional space: |
| | | |
| + | $$ |
| + | G ( x, t; y , \tau ) = |
| + | \frac{1}{( 2 \sqrt \pi ) ^ {N} ( t - \tau ) |
| + | ^ {N/2} } |
| + | e ^ {- r _ {xy} ^ {2} / 4 ( t - \tau ) } . |
| + | $$ |
| | | |
| + | Here, $ \sigma $ |
| + | is the potential density. The function $ \nu $ |
| + | and its generalization to the case of an arbitrary parabolic equation of the second order have properties which are similar to those described above for $ u $[[#References|[3]]], [[#References|[4]]], [[#References|[5]]]. |
| | | |
| ====Comments==== | | ====Comments==== |
− | See [[#References|[a1]]] for an introduction to double-layer potentials for more general open sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033880/d033880100.png" />. | + | See [[#References|[a1]]] for an introduction to double-layer potentials for more general open sets in $ \mathbf R ^ {n} $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Král, "Integral operators in potential theory" , ''Lect. notes in math.'' , '''823''' , Springer (1980)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> N.M. Günter, "Potential theory and its applications to basic problems of mathematical physics" , F. Ungar (1967) (Translated from French)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> V.I. Smirnov, "A course of higher mathematics" , '''4''' , Addison-Wesley (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Král, "Integral operators in potential theory" , ''Lect. notes in math.'' , '''823''' , Springer (1980)</TD></TR> |
| + | </table> |
An expression of the type
$$ \tag{1 }
u ( x) = \int\limits _ \Gamma
\frac \partial {\partial n _ {y} }
( h ( r _ {xy} )) \mu ( y) ds _ {y} ,
$$
where $ \Gamma $
is the boundary of an arbitrary bounded $ N $-
dimensional domain $ G \subset \mathbf R ^ {N} $,
$ N \geq 2 $,
and $ n _ {y} $
is the exterior normal to the boundary $ \Gamma $
of $ G $
at a point $ y $;
$ \mu $
is the potential density, which is a function defined on $ \Gamma $;
$ h $
is a fundamental solution of the Laplace equation:
$$ \tag{2 }
h ( r _ {xy} ) = \left \{
\begin{array}{ll}
\frac{1}{( N - 2 ) \omega _ {N} }
r _ {xy} ^ {2-} N , & N > 2 \\
\frac{1}{2 \pi }
\mathop{\rm ln}
\frac{1}{r} _ {xy} , & N = 2 , \\
\end{array}
\right .$$
$ \omega _ {N} = 2 ( \sqrt \pi ) ^ {N} / \Gamma ( N / 2 ) $
is the area of the surface of the $ ( N - 1 ) $-
dimensional unit sphere, and $ r _ {xy} = \sqrt {\sum _ {i=1} ^ {N} ( x _ {i} - y _ {i} ) ^ {2} } $
is the distance between two points $ x $
and $ y \in \mathbf R ^ {N} $.
The boundary $ \Gamma $
is of class $ C ^ {( 1 , \lambda ) } $;
it is a Lyapunov surface or a Lyapunov arc (cf. Lyapunov surfaces and curves).
Expression (1) may be interpreted as the potential produced by dipoles located on $ \Gamma $,
the direction of which at any point $ y \in \Gamma $
coincides with that of the exterior normal $ n _ {y} $,
while its intensity is equal to $ \mu ( y) $.
If $ \mu \in C ^ {(} 0) ( \Gamma ) $,
then $ u $
is defined on $ \mathbf R ^ {N} $(
in particular, on $ \Gamma $)
and displays the following properties.
1) The function $ u $
has derivatives of all orders $ ( \in C ^ {( \infty ) } ) $
everywhere in $ \mathbf R ^ {N} \setminus \Gamma $
and satisfies the Laplace equation, and the derivatives with respect to the coordinates of a point may be computed by differentiation of the integrand.
2) On passing through the boundary $ \Gamma $
the function $ u $
undergoes a break. Let $ x _ {0} $
be an arbitrary point on $ \Gamma $;
let $ u ^ {+} ( x _ {0} ) $
and $ u ^ {-} ( x _ {0} ) $
be the interior and exterior boundary values; then $ u ^ \pm ( x _ {0} ) $
exist and are equal to
$$ \tag{3 }
u ^ \pm ( x _ {0} ) = \pm
\frac{\mu ( x _ {0} ) }{2}
+
\int\limits _ \Gamma
\frac \partial {\partial n _ {y} }
( h ( r _ {x _ {0} y } ) ) \mu ( y) ds _ {y} ,
$$
and the integral in formula (3) as a function of $ x _ {0} \in \Gamma $
belongs to $ C ^ {( 0 , \alpha ) } $
for any $ 0 \leq \alpha < 1 $;
also, the function equal to $ u $
in $ G $
and to $ u ^ {+} $
on $ \Gamma $
is continuous on $ G \cup \Gamma $,
while the function equal to $ u $
in $ \mathbf R ^ {N} \setminus ( G \cup \Gamma ) $
and equal to $ u ^ {-} $
on $ \Gamma $
is continuous in $ \mathbf R ^ {N} \setminus G $.
3) If the density $ \mu \in C ^ {( 0, \alpha ) } $
and if $ \alpha \leq \lambda $,
then $ u $,
extended as in (2) on $ G \cup \Gamma $
or $ \mathbf R ^ {N} \setminus G $,
is of class $ C ^ {( 0, \alpha ) } $
in $ G \cup \Gamma $
or in $ \mathbf R ^ {N} \setminus G $.
4) If $ \alpha > 1 - \lambda $,
and $ x _ {1} $
and $ x _ {2} $
are two points on the normal issuing from a point $ x _ {0} $
and lying symmetric about $ x _ {0} $,
then
$$ \tag{4 }
\lim\limits _ {x _ {1} \rightarrow x _ {0} }
\left (
\frac{\partial u ( x _ {2} ) }{\partial n }
-
\frac{\partial u ( x _ {1} ) }{\partial n }
\right ) = 0.
$$
In particular, if one of the derivatives $ \partial u ^ {+} ( x _ {0} ) / \partial n $,
$ \partial u ^ {-} ( x _ {0} ) / \partial n $
exists, then the other derivative also exists and $ \partial u ^ {+} ( x _ {0} ) / \partial n = \partial u ^ {-} ( x _ {0} ) / \partial n $.
This is also true if $ \mu \in C ^ {(} 0) ( \Gamma ) $
and $ \Gamma \in C ^ {(} 2) $.
The above properties can be generalized in various ways. The density $ \mu $
may belong to $ L _ {p} ( \Gamma ) $,
$ p \geq 1 $.
Then $ u \in L _ {p} ( G \cup \Gamma ) $,
$ u \in C ^ {( \infty ) } $
outside $ \Gamma $
and it satisfies the Laplace equation, formula (3) and (4) apply for almost-all $ x _ {0} \in \Gamma $
and the integral in (3) belongs to $ L _ {p} ( \Gamma ) $.
The properties of double-layer potentials, regarded as integrals with respect to an arbitrary measure $ \nu $
defined on $ \Gamma $,
have also been studied:
$$
u ( x) = \int\limits _ \Gamma
\frac \partial {\partial n _ {y} }
( h ( r _ {xy} ) ) d \nu ( y) .
$$
Here, too, $ u \in C ^ {( \infty ) } $
outside $ \Gamma $
and it satisfies the Laplace equation. Formulas (3) and (4) apply for almost-all $ x _ {0} \in \Gamma $
with respect to the Lebesgue measure $ \nu $
after $ \mu $
has been replaced by the density $ \nu ^ \prime $.
In definition (1) the fundamental solution of the Laplace equation may be replaced by an arbitrary Lewy function for a general elliptic operator of the second order with variable coefficients, while $ \partial / \partial n _ {y} $
is replaced by the derivative with respect to the conormal. The properties listed above remain valid [2].
The double-layer potential plays an important role in solving boundary value problems of elliptic equations. The representation of the solution of the (first) boundary value problem is sought as a double-layer potential with unknown density $ \mu $
and an application of property (2) leads to a Fredholm equation of the second kind on $ \Gamma $
in order to determine the function $ \mu $[1], [2]. In solving boundary value problems for parabolic equations use is made of the concept of the thermal double layer potential, i.e. of an integral of the type
$$
\nu ( x , t ) = \int\limits _ { 0 } ^ { t } d \tau \int\limits _ \Gamma
\frac \partial {\partial n _ {y} }
( G ( x, t; y, \tau ) )
\sigma ( y, \tau ) dy ,
$$
where $ G ( x, t; y , \tau ) $
is a fundamental solution of the thermal conductance (or heat) equation in an $ N $-
dimensional space:
$$
G ( x, t; y , \tau ) =
\frac{1}{( 2 \sqrt \pi ) ^ {N} ( t - \tau )
^ {N/2} }
e ^ {- r _ {xy} ^ {2} / 4 ( t - \tau ) } .
$$
Here, $ \sigma $
is the potential density. The function $ \nu $
and its generalization to the case of an arbitrary parabolic equation of the second order have properties which are similar to those described above for $ u $[3], [4], [5].
See [a1] for an introduction to double-layer potentials for more general open sets in $ \mathbf R ^ {n} $.
References
[1] | N.M. Günter, "Potential theory and its applications to basic problems of mathematical physics" , F. Ungar (1967) (Translated from French) |
[2] | C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian) |
[3] | A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
[4] | V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian) |
[5] | A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964) |
[a1] | J. Král, "Integral operators in potential theory" , Lect. notes in math. , 823 , Springer (1980) |