Difference between revisions of "Chebyshev polynomials"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 33: | Line 33: | ||
$$ | $$ | ||
− | T _ {n+} | + | T _ {n+1} ( x) = 2 x T _ {n} ( x) - T _ {n-1} ( x) , |
$$ | $$ | ||
Line 72: | Line 72: | ||
The leading coefficient of $ T _ {n} ( x) $, | The leading coefficient of $ T _ {n} ( x) $, | ||
for $ n \geq 1 $, | for $ n \geq 1 $, | ||
− | is $ 2 ^ {n-} | + | is $ 2 ^ {n-1} $. |
Hence Chebyshev polynomials with leading coefficient 1 are defined by the formula | Hence Chebyshev polynomials with leading coefficient 1 are defined by the formula | ||
$$ | $$ | ||
\widetilde{T} _ {n} ( x) = | \widetilde{T} _ {n} ( x) = | ||
− | \frac{1}{2 ^ {n-} | + | \frac{1}{2 ^ {n- 1} } |
T _ {n} ( x) = \ | T _ {n} ( x) = \ | ||
− | \frac{1}{2 ^ {n-} | + | \frac{1}{2 ^ {n- 1} } |
\cos ( n { \mathop{\rm arc} \cos } x ) ,\ \ | \cos ( n { \mathop{\rm arc} \cos } x ) ,\ \ | ||
n \geq 1 . | n \geq 1 . | ||
Line 89: | Line 89: | ||
$$ | $$ | ||
− | x _ {k} ^ {( | + | x _ {k} ^ {( n)} = \cos |
\frac{2 k - 1 }{2n} | \frac{2 k - 1 }{2n} | ||
\pi ,\ \ | \pi ,\ \ | ||
Line 113: | Line 113: | ||
\max _ {x \in [ - 1 , 1 ] } | \widetilde{T} _ {n} ( x) | | \max _ {x \in [ - 1 , 1 ] } | \widetilde{T} _ {n} ( x) | | ||
= | = | ||
− | \frac{1}{2 ^ {n-} | + | \frac{1}{2 ^ {n- 1} } |
. | . | ||
$$ | $$ | ||
Line 148: | Line 148: | ||
$$ | $$ | ||
− | f ( x) = \sum _ { n= } | + | f ( x) = \sum _{n=0} ^ \infty a _ {n} \widehat{T} _ {n} ( x) ,\ \ |
x \in [ - 1 , 1 ] , | x \in [ - 1 , 1 ] , | ||
$$ | $$ | ||
Line 156: | Line 156: | ||
$$ | $$ | ||
− | a _ {n} = \int\limits _ { - } | + | a _ {n} = \int\limits _ { - 1} ^ { 1 } f ( t) \widehat{T} _ {n} ( t) |
\frac{dt}{\sqrt {1- t ^ {2} } } | \frac{dt}{\sqrt {1- t ^ {2} } } | ||
Line 172: | Line 172: | ||
$$ | $$ | ||
− | \left | f ( x) - \sum _ { k= } | + | \left | f ( x) - \sum _{k=0} ^ { n } a _ {k} \widehat{T} _ {k} ( x) \right | |
\leq | \leq | ||
\frac{c _ {1} \mathop{\rm ln} n }{n ^ {p + \alpha } } | \frac{c _ {1} \mathop{\rm ln} n }{n ^ {p + \alpha } } | ||
Line 187: | Line 187: | ||
$$ | $$ | ||
U _ {n} ( x) = | U _ {n} ( x) = | ||
− | \frac{1}{n+} | + | \frac{1}{n+1} T _ {n+ 1} ^ { \prime } ( x) = \sin [ ( n |
− | |||
+ 1 ) { \mathop{\rm arc} \cos } x ] | + 1 ) { \mathop{\rm arc} \cos } x ] | ||
− | \frac{1}{\sqrt {1 - x ^ {2} } } | + | \frac{1}{\sqrt {1 - x ^ {2} } } . |
− | |||
$$ | $$ | ||
Line 208: | Line 206: | ||
\frac{1}{2 ^ {n-} 1 } | \frac{1}{2 ^ {n-} 1 } | ||
− | = \int\limits _ { - } | + | = \int\limits _ { - 1} ^ { 1 } |
− | | \widetilde{U} _ {n} ( x) | dx \leq \int\limits _ { - } | + | | \widetilde{U} _ {n} ( x) | dx \leq \int\limits _ { - 1} ^ { 1 } |
| \widetilde{Q} _ {n} ( x) | dx . | | \widetilde{Q} _ {n} ( x) | dx . | ||
$$ | $$ | ||
Line 216: | Line 214: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.L. Chebyshev, , ''Collected works'' , '''2''' , Moscow-Leningrad (1947) pp. 23–51 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.L. Chebyshev, , ''Collected works'' , '''2''' , Moscow-Leningrad (1947) pp. 23–51 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR> | ||
+ | </table> |
Latest revision as of 16:20, 6 January 2024
of the first kind
Polynomials that are orthogonal on the interval $ [ - 1 , 1 ] $ with the weight function
$$ h _ {1} ( x) = \frac{1}{\sqrt {1 - x ^ {2} }} ,\ \ x \in ( - 1 , 1 ) . $$
For the standardized Chebyshev polynomials one has the formula
$$ T _ {n} ( x) = \cos ( n \mathop{\rm arc} \cos x ) ,\ \ x \in [ - 1 , 1 ] , $$
and the recurrence relation
$$ T _ {n+1} ( x) = 2 x T _ {n} ( x) - T _ {n-1} ( x) , $$
by which one can determine the sequence
$$ T _ {0} ( x) = 1 ,\ T _ {1} ( x) = x ,\ \ T _ {2} ( x) = 2 x ^ {2} - 1 , $$
$$ T _ {3} ( x) = 4 x ^ {3} - 3 x ,\ T _ {4} ( x) = 8 x ^ {4} - 8 x ^ {2} + 1 , $$
$$ T _ {5} ( x) = 16 x ^ {5} - 20 x ^ {3} + 5 x , . . . . $$
The orthonormalized Chebyshev polynomials are:
$$ \widehat{T} _ {0} ( x) = \frac{1}{\sqrt \pi } T _ {0} ( x) = \frac{1}{\sqrt \pi } , $$
$$ \widehat{T} _ {n} ( x) = \sqrt { \frac{2} \pi } T _ {n} ( x) = \sqrt { \frac{2} \pi } \cos ( n \mathop{\rm arc} \cos x ) ,\ n \geq 1 . $$
The leading coefficient of $ T _ {n} ( x) $, for $ n \geq 1 $, is $ 2 ^ {n-1} $. Hence Chebyshev polynomials with leading coefficient 1 are defined by the formula
$$ \widetilde{T} _ {n} ( x) = \frac{1}{2 ^ {n- 1} } T _ {n} ( x) = \ \frac{1}{2 ^ {n- 1} } \cos ( n { \mathop{\rm arc} \cos } x ) ,\ \ n \geq 1 . $$
The zeros of $ T _ {n} ( x) $, given by
$$ x _ {k} ^ {( n)} = \cos \frac{2 k - 1 }{2n} \pi ,\ \ k = 1 \dots n , $$
frequently occur as interpolation nodes in quadrature formulas. The polynomial $ T _ {n} ( x) $ is a solution of the differential equation
$$ ( 1 - x ^ {2} ) y ^ {\prime\prime} - x y ^ \prime + n ^ {2} y = 0 . $$
The polynomials $ \widetilde{T} _ {n} ( x) $ deviate as least as possible from zero on the interval $ [ - 1 , 1 ] $, that is, for any other polynomial $ \widetilde{F} _ {n} ( x) $ of degree $ n $ with leading coefficient 1 one has the following condition
$$ \max _ {x \in [ - 1 , 1 ] } | \widetilde{F} _ {n} ( x) | > \ \max _ {x \in [ - 1 , 1 ] } | \widetilde{T} _ {n} ( x) | = \frac{1}{2 ^ {n- 1} } . $$
On the other hand, for any polynomial $ Q _ {n} ( x) $ of degree $ n $ or less and satisfying
$$ \max _ {x \in [ - 1 , 1 ] } \ | Q _ {n} ( x) | = 1 , $$
one has, for any $ x _ {0} \in ( - \infty , - 1 ) \cup ( 1 , \infty ) $, the inequality
$$ | Q ( x _ {0} ) | \leq | T _ {n} ( x _ {0} ) | . $$
If a function $ f $ is continuous on the interval $ [ - 1 , 1 ] $ and if its modulus of continuity $ \omega ( \delta , f ) $ satisfies the Dini condition
$$ \lim\limits _ {\delta \rightarrow 0 } \omega ( \delta , f ) \ \mathop{\rm ln} \frac{1} \delta = 0 , $$
then this function can be expanded in a Fourier–Chebyshev series,
$$ f ( x) = \sum _{n=0} ^ \infty a _ {n} \widehat{T} _ {n} ( x) ,\ \ x \in [ - 1 , 1 ] , $$
which converges uniformly on $ [ - 1 , 1 ] $. The coefficients in this series are defined by the formula
$$ a _ {n} = \int\limits _ { - 1} ^ { 1 } f ( t) \widehat{T} _ {n} ( t) \frac{dt}{\sqrt {1- t ^ {2} } } . $$
If the function $ f $ is $ p $- times continuously differentiable on $ [ - 1 , 1 ] $ and if its $ p $- th derivative $ f ^ {(} p) $ satisfies a Lipschitz condition of order $ \alpha $, i.e. $ f ^ {(} p) \in \mathop{\rm Lip} \alpha $, then one has the inequality
$$ \left | f ( x) - \sum _{k=0} ^ { n } a _ {k} \widehat{T} _ {k} ( x) \right | \leq \frac{c _ {1} \mathop{\rm ln} n }{n ^ {p + \alpha } } ,\ \ x \in [ - 1 , 1 ] , $$
where the constant $ c _ {1} $ does not depend on $ n $ and $ x $.
Chebyshev polynomials of the second kind are defined by
$$ U _ {n} ( x) = \frac{1}{n+1} T _ {n+ 1} ^ { \prime } ( x) = \sin [ ( n + 1 ) { \mathop{\rm arc} \cos } x ] \frac{1}{\sqrt {1 - x ^ {2} } } . $$
These polynomials are orthogonal on the interval $ [ - 1 , 1 ] $ with weight function
$$ h _ {2} ( x) = \sqrt {1 - x ^ {2} } ,\ \ x \in [ - 1 , 1 ] . $$
For any polynomial $ \widetilde{Q} _ {n} ( x) $ with leading coefficient 1 one has the inequality
$$ \frac{1}{2 ^ {n-} 1 } = \int\limits _ { - 1} ^ { 1 } | \widetilde{U} _ {n} ( x) | dx \leq \int\limits _ { - 1} ^ { 1 } | \widetilde{Q} _ {n} ( x) | dx . $$
The Chebyshev polynomials were introduced in 1854 by P.L. Chebyshev (cf. [1]). Both systems of Chebyshev polynomials are special cases of ultraspherical polynomials and Jacobi polynomials.
References
[1] | P.L. Chebyshev, , Collected works , 2 , Moscow-Leningrad (1947) pp. 23–51 (In Russian) |
[2] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
Chebyshev polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chebyshev_polynomials&oldid=46330