Difference between revisions of "Positive-definite form"
(Importing text file) |
(latex details) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0738801.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/P073/P.0703880 Positive\AAhdefinite form | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An expression | An expression | ||
− | + | $$ | |
+ | \sum _ {i,k= 1 } ^ { n } a _ {ik} x _ {i} x _ {k} , | ||
+ | $$ | ||
− | where | + | where $ a _ {ik} = a _ {ki} $, |
+ | which takes non-negative values for any real values $ x _ {1} \dots x _ {n} $ | ||
+ | and vanishes only for $ x _ {1} = \dots = x _ {n} = 0 $. | ||
+ | Therefore, a positive-definite form is a [[Quadratic form|quadratic form]] of special type. Any positive-definite form can be converted by a linear transformation to the representation | ||
− | + | $$ | |
+ | \sum_{i=1} ^ { n } x _ {i} ^ {2} . | ||
+ | $$ | ||
In order that a form | In order that a form | ||
− | + | $$ | |
+ | \sum _ {i,k= 1 } ^ { n } a _ {ik} x _ {i} x _ {k} $$ | ||
− | be positive definite, it is necessary and sufficient that | + | be positive definite, it is necessary and sufficient that $ \Delta _ {1} > 0 \dots \Delta _ {n} > 0 $, |
+ | where | ||
− | + | $$ | |
+ | \Delta _ {k} = \left | | ||
+ | |||
+ | \begin{array}{ccc} | ||
+ | a _ {11} &\dots &a _ {1k} \\ | ||
+ | \cdot &\dots &\cdot \\ | ||
+ | a _ {k1} &\dots &a _ {kk} \\ | ||
+ | \end{array} | ||
+ | \ | ||
+ | \right | . | ||
+ | $$ | ||
In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point. | In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point. | ||
Line 19: | Line 50: | ||
A form | A form | ||
− | + | $$ | |
− | + | f = \sum _ {i,k= 1 } ^ { n } a _ {ik} x _ {i} \overline{x}\; _ {k} $$ | |
− | |||
− | |||
− | |||
− | + | such that $ a _ {ik} = \overline{a}\; _ {ki} $ | |
+ | and $ f \geq 0 $ | ||
+ | for all values of $ x _ {1} \dots x _ {n} $ | ||
+ | and $ f = 0 $ | ||
+ | only for $ x _ {1} = \dots = x _ {n} = 0 $ | ||
+ | is called a Hermitian positive-definite form. | ||
− | + | The following concepts are related to the concept of a positive-definite form: 1) a positive-definite matrix $ \| a _ {ik} \| _ {1} ^ {n} $ | |
+ | is a matrix such that $ \sum _ {i,k= 1 } ^ {n} a _ {ik} x _ {i} \overline{x}\; _ {k} $ | ||
+ | is a Hermitian positive-definite form; 2) a [[Positive-definite kernel|positive-definite kernel]] is a function $ K( x, y) = K( y, x) $ | ||
+ | such that | ||
+ | $$ | ||
+ | \int\limits _ {- \infty } ^ \infty \int\limits _ {- \infty } ^ \infty K( x, y) \phi ( x) | ||
+ | \overline{ {\phi ( y) }}\; dx dy \geq 0 | ||
+ | $$ | ||
+ | for every function $ \phi ( x) $ | ||
+ | with an integrable square; 3) a [[Positive-definite function|positive-definite function]] is a function $ f( x) $ | ||
+ | such that the kernel $ K( x, y) = f( x- y) $ | ||
+ | is positive definite. By Bochner's theorem, the class of continuous positive-definite functions $ f( x) $ | ||
+ | with $ f( 0) = 1 $ | ||
+ | coincides with the class of characteristic functions of distributions of random variables (cf. [[Characteristic function|Characteristic function]]). | ||
====Comments==== | ====Comments==== | ||
− | A kernel that is semi-positive definite (non-negative definite) is one that satisfies | + | A kernel that is semi-positive definite (non-negative definite) is one that satisfies $ \int K( x, y) \phi ( x) \overline{ {\phi ( y) }}\; dx dy \geq 0 $ |
+ | for all $ \phi \in L _ {2} $. | ||
+ | Such a kernel is sometimes also simply called positive. However, the phrase "positive kernel" is also used for the weaker notion $ K( x, y) \geq 0 $( | ||
+ | almost-everywhere). A positive kernel $ \neq 0 $ | ||
+ | in the latter sense has at least one eigen value $ > 0 $ | ||
+ | while a semi-positive definite kernel has all eigen values $ \geq 0 $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Lukacs, "Characteristic functions" , Griffin (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''I-II''' , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Lukacs, "Characteristic functions" , Griffin (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''I-II''' , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian)</TD></TR> | ||
+ | </table> |
Latest revision as of 12:52, 6 January 2024
An expression
$$ \sum _ {i,k= 1 } ^ { n } a _ {ik} x _ {i} x _ {k} , $$
where $ a _ {ik} = a _ {ki} $, which takes non-negative values for any real values $ x _ {1} \dots x _ {n} $ and vanishes only for $ x _ {1} = \dots = x _ {n} = 0 $. Therefore, a positive-definite form is a quadratic form of special type. Any positive-definite form can be converted by a linear transformation to the representation
$$ \sum_{i=1} ^ { n } x _ {i} ^ {2} . $$
In order that a form
$$ \sum _ {i,k= 1 } ^ { n } a _ {ik} x _ {i} x _ {k} $$
be positive definite, it is necessary and sufficient that $ \Delta _ {1} > 0 \dots \Delta _ {n} > 0 $, where
$$ \Delta _ {k} = \left | \begin{array}{ccc} a _ {11} &\dots &a _ {1k} \\ \cdot &\dots &\cdot \\ a _ {k1} &\dots &a _ {kk} \\ \end{array} \ \right | . $$
In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point.
A form
$$ f = \sum _ {i,k= 1 } ^ { n } a _ {ik} x _ {i} \overline{x}\; _ {k} $$
such that $ a _ {ik} = \overline{a}\; _ {ki} $ and $ f \geq 0 $ for all values of $ x _ {1} \dots x _ {n} $ and $ f = 0 $ only for $ x _ {1} = \dots = x _ {n} = 0 $ is called a Hermitian positive-definite form.
The following concepts are related to the concept of a positive-definite form: 1) a positive-definite matrix $ \| a _ {ik} \| _ {1} ^ {n} $ is a matrix such that $ \sum _ {i,k= 1 } ^ {n} a _ {ik} x _ {i} \overline{x}\; _ {k} $ is a Hermitian positive-definite form; 2) a positive-definite kernel is a function $ K( x, y) = K( y, x) $ such that
$$ \int\limits _ {- \infty } ^ \infty \int\limits _ {- \infty } ^ \infty K( x, y) \phi ( x) \overline{ {\phi ( y) }}\; dx dy \geq 0 $$
for every function $ \phi ( x) $ with an integrable square; 3) a positive-definite function is a function $ f( x) $ such that the kernel $ K( x, y) = f( x- y) $ is positive definite. By Bochner's theorem, the class of continuous positive-definite functions $ f( x) $ with $ f( 0) = 1 $ coincides with the class of characteristic functions of distributions of random variables (cf. Characteristic function).
Comments
A kernel that is semi-positive definite (non-negative definite) is one that satisfies $ \int K( x, y) \phi ( x) \overline{ {\phi ( y) }}\; dx dy \geq 0 $ for all $ \phi \in L _ {2} $. Such a kernel is sometimes also simply called positive. However, the phrase "positive kernel" is also used for the weaker notion $ K( x, y) \geq 0 $( almost-everywhere). A positive kernel $ \neq 0 $ in the latter sense has at least one eigen value $ > 0 $ while a semi-positive definite kernel has all eigen values $ \geq 0 $.
References
[a1] | E. Lukacs, "Characteristic functions" , Griffin (1970) |
[a2] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian) |
[a3] | H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff |
[a4] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , I-II , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian) |
Positive-definite form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive-definite_form&oldid=12091