Difference between revisions of "Minimal property"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
(One intermediate revision by the same user not shown) | |||
Line 14: | Line 14: | ||
For any function $ f \in L _ {2} [ a , b ] $, | For any function $ f \in L _ {2} [ a , b ] $, | ||
− | any orthonormal system $ \{ \phi _ {k} \} _ {k=} | + | any orthonormal system $ \{ \phi _ {k} \}_{k=1} ^ \infty $ |
on $ [ a , b ] $ | on $ [ a , b ] $ | ||
and for any $ n $, | and for any $ n $, | ||
Line 21: | Line 21: | ||
$$ | $$ | ||
\inf _ | \inf _ | ||
− | {\{ a _ {k} \} _ {k=} | + | {\{ a _ {k} \}_{k=1} ^ {n} } \ |
\int\limits _ { a } ^ { b } | \int\limits _ { a } ^ { b } | ||
− | \left | f ( x) - \ | + | \left | f ( x) - \sum_{k=1} ^ { n } a _ {k} \phi _ {k} ( x) \ |
\right | ^ {2} d x = | \right | ^ {2} d x = | ||
$$ | $$ | ||
Line 36: | Line 36: | ||
$$ | $$ | ||
S _ {n} ( f , x ) = \ | S _ {n} ( f , x ) = \ | ||
− | \ | + | \sum_{k=1}^ { n } |
c _ {k} ( f ) \phi _ {k} ( x) | c _ {k} ( f ) \phi _ {k} ( x) | ||
$$ | $$ | ||
Line 60: | Line 60: | ||
$$ | $$ | ||
= \ | = \ | ||
− | \int\limits _ { a } ^ { b } f ^ { 2 } ( x) d x - \ | + | \int\limits _ { a } ^ { b } f ^ { 2 } ( x) d x - \sum_{k=1} ^ { n } | c _ {k} ( f ) | ^ {2} ,\ n = 1 , 2 ,\dots . |
$$ | $$ | ||
− | Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. [[ | + | Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. [[Bessel inequality]]; [[Parseval equality]]; [[Complete system of functions|Complete system of functions]]; [[Orthogonal series|Orthogonal series]]; [[Orthogonal system]]). |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , '''1–2''' , Graylock (1957–1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1978) pp. Sect. III.4</TD></TR> | |
− | + | </table> | |
− | |||
− |
Latest revision as of 12:37, 6 January 2024
of the partial sums of an orthogonal expansion
For any function $ f \in L _ {2} [ a , b ] $, any orthonormal system $ \{ \phi _ {k} \}_{k=1} ^ \infty $ on $ [ a , b ] $ and for any $ n $, the equality
$$ \inf _ {\{ a _ {k} \}_{k=1} ^ {n} } \ \int\limits _ { a } ^ { b } \left | f ( x) - \sum_{k=1} ^ { n } a _ {k} \phi _ {k} ( x) \ \right | ^ {2} d x = $$
$$ = \ \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x $$
holds, where
$$ S _ {n} ( f , x ) = \ \sum_{k=1}^ { n } c _ {k} ( f ) \phi _ {k} ( x) $$
is the $ n $- th partial sum of the expansion of $ f $ with respect to the system $ \{ \phi _ {k} \} $, that is,
$$ c _ {k} ( f ) = \ \int\limits _ { a } ^ { b } f ( x) \phi _ {k} ( x) d x . $$
The minimum is attained precisely at the sum $ S _ {n} ( f , x ) $ and
$$ \int\limits _ { a } ^ { b } | f ( x) - S _ {n} ( f , x ) | ^ {2} d x = $$
$$ = \ \int\limits _ { a } ^ { b } f ^ { 2 } ( x) d x - \sum_{k=1} ^ { n } | c _ {k} ( f ) | ^ {2} ,\ n = 1 , 2 ,\dots . $$
Bessel's inequality, Parseval's equality for complete systems and also certain other basic properties of orthogonal expansions essentially are corollaries of this equality (cf. Bessel inequality; Parseval equality; Complete system of functions; Orthogonal series; Orthogonal system).
References
[1] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) |
[2] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
[a1] | K. Yosida, "Functional analysis" , Springer (1978) pp. Sect. III.4 |
Minimal property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimal_property&oldid=47842