Difference between revisions of "Laguerre transform"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 15: | Line 15: | ||
$$ | $$ | ||
f ( n) = T \{ F ( x) \} = \ | f ( n) = T \{ F ( x) \} = \ | ||
− | \int\limits _ { 0 } ^ \infty e ^ {-} | + | \int\limits _ { 0 } ^ \infty e ^ {- x} L _ {n} ( x) F ( x) d x ,\ \ |
n = 0, 1 \dots | n = 0, 1 \dots | ||
$$ | $$ | ||
where $ L _ {n} ( x) $ | where $ L _ {n} ( x) $ | ||
− | is the Laguerre polynomial (cf. [[ | + | is the Laguerre polynomial (cf. [[Laguerre polynomials]]) of degree $ n $. |
The inversion formula is | The inversion formula is | ||
$$ | $$ | ||
− | T ^ {-} | + | T ^ {-1} \{ f ( n) \} = F ( x) = \ |
− | \sum _ { n= } | + | \sum _ { n= 0} ^ \infty f ( n) L _ {n} ( x) ,\ \ |
0 < x < \infty , | 0 < x < \infty , | ||
$$ | $$ | ||
Line 41: | Line 41: | ||
\frac{d F ( x) }{dx} | \frac{d F ( x) }{dx} | ||
\right \} = \ | \right \} = \ | ||
− | \sum _ { k= } | + | \sum _ { k=0} ^ { n } f ( k) - F ( 0) ,\ \ |
n = 0 , 1 \dots | n = 0 , 1 \dots | ||
$$ | $$ | ||
Line 65: | Line 65: | ||
\frac{d}{dx} | \frac{d}{dx} | ||
− | \left [ x e ^ {-} | + | \left [ x e ^ {-x} |
\frac{d F ( x) }{dx} | \frac{d F ( x) }{dx} | ||
Line 113: | Line 113: | ||
$$ | $$ | ||
− | T ^ {-} | + | T ^ {-1} \{ f ( n) g ( n) \} = |
$$ | $$ | ||
$$ | $$ | ||
− | = | + | = \frac{1} \pi |
− | + | \int\limits _ { 0 } ^ \infty e ^ {-t} F ( t) \int\limits | |
− | \frac{1} \pi | ||
− | \int\limits _ { 0 } ^ \infty e ^ {-} | ||
_ { 0 } ^ \pi e ^ {\sqrt {xt } \cos \theta | _ { 0 } ^ \pi e ^ {\sqrt {xt } \cos \theta | ||
} \cos ( \sqrt {xt } \sin \theta ) \times | } \cos ( \sqrt {xt } \sin \theta ) \times | ||
Line 138: | Line 136: | ||
$$ | $$ | ||
= \ | = \ | ||
− | \int\limits _ { 0 } ^ \infty e ^ {-} | + | \int\limits _ { 0 } ^ \infty e ^ {- x} x ^ \alpha L _ {n} ^ \alpha ( x) F ( x) d x ,\ n = 0 , 1 \dots |
$$ | $$ | ||
Line 145: | Line 143: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Zemanian, "Generalized integral transformations" , Interscience (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. McCully, "The Laguerre transform" ''SIAM Rev.'' , '''2''' : 3 (1960) pp. 185–191</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Debnath, "On Laguerre transform" ''Bull. Calcutta Math. Soc.'' , '''52''' : 2 (1960) pp. 69–77</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–74 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> A.G. Zemanian, "Generalized integral transformations" , Interscience (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. McCully, "The Laguerre transform" ''SIAM Rev.'' , '''2''' : 3 (1960) pp. 185–191</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Debnath, "On Laguerre transform" ''Bull. Calcutta Math. Soc.'' , '''52''' : 2 (1960) pp. 69–77</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–74 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR> | ||
+ | </table> |
Latest revision as of 08:39, 6 January 2024
The integral transform
$$ f ( n) = T \{ F ( x) \} = \ \int\limits _ { 0 } ^ \infty e ^ {- x} L _ {n} ( x) F ( x) d x ,\ \ n = 0, 1 \dots $$
where $ L _ {n} ( x) $ is the Laguerre polynomial (cf. Laguerre polynomials) of degree $ n $. The inversion formula is
$$ T ^ {-1} \{ f ( n) \} = F ( x) = \ \sum _ { n= 0} ^ \infty f ( n) L _ {n} ( x) ,\ \ 0 < x < \infty , $$
if the series converges. If $ F $ is continuous, $ F ^ { \prime } $ is piecewise continuous on $ [ 0 , \infty ) $ and $ F ( x) = O ( e ^ {ax} ) $, $ x \rightarrow \infty $, $ a < 1 $, then
$$ T \left \{ \frac{d F ( x) }{dx} \right \} = \ \sum _ { k=0} ^ { n } f ( k) - F ( 0) ,\ \ n = 0 , 1 \dots $$
$$ T \left \{ x \frac{d F ( x) }{dx} \right \} = - ( n + 1 ) f ( n + 1 ) + n f ( n) ,\ n = 0 , 1 , \dots. $$
If $ F $ and $ F ^ { \prime } $ are continuous, $ F ^ { \prime\prime } $ is piecewise continuous on $ [ 0 , \infty ) $ and $ | F ( x) | + | F ^ { \prime } ( x) | = O ( e ^ {ax} ) $, $ x \rightarrow \infty $, $ a < 1 $, then
$$ T \left \{ e ^ {x} \frac{d}{dx} \left [ x e ^ {-x} \frac{d F ( x) }{dx} \right ] \right \} = - n f ( n) ,\ n = 0 , 1 , . . .. $$
If $ F $ is piecewise continuous on $ [ 0 , \infty ) $ and $ F ( x) = O ( e ^ {ax} ) $, $ x \rightarrow \infty $, $ a < 1 $, then for
$$ G ( x) = \int\limits _ { 0 } ^ { x } F ( t) d t , $$
$$ g ( n) = T \left \{ \int\limits _ { 0 } ^ { x } F ( t) d t \right \} = f ( n) - f ( n - 1 ) ,\ n = 1 , 2 \dots $$
and for $ n = 0 $,
$$ g ( 0) = f ( 0) . $$
Suppose that $ F $ and $ G $ are piecewise continuous on $ [ 0 , \infty ) $ and that
$$ | F ( x) | + | G ( x) | = O ( e ^ {ax} ) ,\ \ x \rightarrow \infty ,\ a < \frac{1}{2} , $$
$$ T \{ F \} = f ( n) ,\ T \{ G \} = g ( n) . $$
Then
$$ T ^ {-1} \{ f ( n) g ( n) \} = $$
$$ = \frac{1} \pi \int\limits _ { 0 } ^ \infty e ^ {-t} F ( t) \int\limits _ { 0 } ^ \pi e ^ {\sqrt {xt } \cos \theta } \cos ( \sqrt {xt } \sin \theta ) \times $$
$$ \times G ( x + t - 2 \sqrt {xt } \cos \theta ) d \theta d t . $$
The generalized Laguerre transform is
$$ f _ \alpha ( n) = T _ \alpha \{ F ( x) \} = $$
$$ = \ \int\limits _ { 0 } ^ \infty e ^ {- x} x ^ \alpha L _ {n} ^ \alpha ( x) F ( x) d x ,\ n = 0 , 1 \dots $$
where $ L _ {n} ^ \alpha ( x) $ is the generalized Laguerre polynomial (see [4]).
References
[1] | A.G. Zemanian, "Generalized integral transformations" , Interscience (1968) |
[2] | J. McCully, "The Laguerre transform" SIAM Rev. , 2 : 3 (1960) pp. 185–191 |
[3] | L. Debnath, "On Laguerre transform" Bull. Calcutta Math. Soc. , 52 : 2 (1960) pp. 69–77 |
[4] | Yu.A. Brychkov, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–74 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Laguerre transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laguerre_transform&oldid=47567