Difference between revisions of "Normal convergence"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (latex details) |
||
Line 14: | Line 14: | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | f = \sum _ { k= } | + | f = \sum _ { k= 1} ^ \infty u _ {k} $$ |
formed by bounded mappings $ u _ {k} : X \rightarrow Y $ | formed by bounded mappings $ u _ {k} : X \rightarrow Y $ | ||
from a set $ X $ | from a set $ X $ | ||
into a normed space $ Y $, | into a normed space $ Y $, | ||
− | such that the series with positive terms $ \sum _ {k=} | + | such that the series with positive terms $ \sum _ {k= 1} ^ \infty \| u _ {k} \| $ |
formed by the norms of the mappings, | formed by the norms of the mappings, | ||
Line 30: | Line 30: | ||
converges. | converges. | ||
− | Normal convergence of the series (1) implies absolute and uniform convergence of the series $ \sum _ {k=} | + | Normal convergence of the series (1) implies absolute and uniform convergence of the series $ \sum _ {k= 1} ^ \infty u _ {k} ( x) $ |
consisting of elements of $ Y $; | consisting of elements of $ Y $; | ||
the converse is not true. For example, if $ u _ {k} : \mathbf R \rightarrow \mathbf R $ | the converse is not true. For example, if $ u _ {k} : \mathbf R \rightarrow \mathbf R $ | ||
Line 37: | Line 37: | ||
and $ u _ {k} ( x) = 0 $ | and $ u _ {k} ( x) = 0 $ | ||
for $ x \in \mathbf R \setminus [ k, k+ 1] $, | for $ x \in \mathbf R \setminus [ k, k+ 1] $, | ||
− | then the series $ \sum _ {k=} | + | then the series $ \sum _ {k= 1 } ^ \infty u _ {k} ( x) $ |
− | converges absolutely, whereas $ \sum _ {k=} | + | converges absolutely, whereas $ \sum _ {k= 1} ^ \infty \| u _ {k} \| = \sum _ {k= 1} ^ \infty 1 / k $ |
diverges. | diverges. | ||
Line 47: | Line 47: | ||
$$ | $$ | ||
\int\limits _ { I } f ( t) d t = \ | \int\limits _ { I } f ( t) d t = \ | ||
− | \sum _ { k= } | + | \sum _ { k= 1 }^ \infty \int\limits _ { I } u _ {k} ( t) d t . |
$$ | $$ | ||
Line 69: | Line 69: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Schwartz, "Cours d'analyse" , '''1''' , Hermann (1967)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Schwartz, "Cours d'analyse" , '''1''' , Hermann (1967)</TD></TR> | ||
+ | </table> |
Latest revision as of 07:35, 5 January 2024
Convergence of a series
$$ \tag{1 } f = \sum _ { k= 1} ^ \infty u _ {k} $$
formed by bounded mappings $ u _ {k} : X \rightarrow Y $ from a set $ X $ into a normed space $ Y $, such that the series with positive terms $ \sum _ {k= 1} ^ \infty \| u _ {k} \| $ formed by the norms of the mappings,
$$ \| u _ {k} \| = \ \sup \{ {\| u _ {k} ( x) \| } : {x \in X } \} , $$
converges.
Normal convergence of the series (1) implies absolute and uniform convergence of the series $ \sum _ {k= 1} ^ \infty u _ {k} ( x) $ consisting of elements of $ Y $; the converse is not true. For example, if $ u _ {k} : \mathbf R \rightarrow \mathbf R $ is the real-valued function defined by $ u _ {k} ( x) = ( \sin \pi x ) / k $ for $ k \leq x \leq k + 1 $ and $ u _ {k} ( x) = 0 $ for $ x \in \mathbf R \setminus [ k, k+ 1] $, then the series $ \sum _ {k= 1 } ^ \infty u _ {k} ( x) $ converges absolutely, whereas $ \sum _ {k= 1} ^ \infty \| u _ {k} \| = \sum _ {k= 1} ^ \infty 1 / k $ diverges.
Suppose, in particular, that each $ u _ {k} : \mathbf R \rightarrow Y $ is a piecewise-continuous function on a non-compact interval $ I \subset \mathbf R $ and that (1) converges normally. Then one can integrate term-by-term on $ I $:
$$ \int\limits _ { I } f ( t) d t = \ \sum _ { k= 1 }^ \infty \int\limits _ { I } u _ {k} ( t) d t . $$
Let $ f: I \times A \rightarrow Y $, where $ I \subset \mathbf R $ is an interval, have left and right limits at each point of $ I $. Then the improper integral
$$ \tag{2 } \int\limits _ { I } f ( t ; \lambda ) d t ,\ \ \lambda \in A , $$
is called normally convergent on $ A $ if there exists a piecewise-continuous positive function $ g : \mathbf R \rightarrow \mathbf R $ such that: 1) $ \| f( x ; \lambda ) \| \leq g ( x) $ for any $ x \in I $ and any $ \lambda \in A $; and 2) the integral $ \int _ {I} g ( t) d t $ converges. Normal convergence of (2) implies its absolute and uniform convergence; the converse is not true.
References
[1] | N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French) |
[2] | N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French) |
[3] | L. Schwartz, "Cours d'analyse" , 1 , Hermann (1967) |
Normal convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_convergence&oldid=48009